微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 如何验证和分析复杂的串行总线链路模型

如何验证和分析复杂的串行总线链路模型

时间:11-19 来源:3721RD 点击:

形中,观察测量电路对DUT的负载效应会有所帮助。启用Tp1可同时查看有和没有测量电路负载效应的信号视图。图5显示了在TP1和TP2位置的传递函数。请注意,TP1的传递函数小纹波是由于SMA电缆的负载效应造成的。另外还可以观察每个测试点的相位、阶跃及脉冲响应。

图5:这个例子显示了SMA电缆的FIR滤波器传递函数曲线。这可用于观察测量电路对DUT的负载效应。

RX特征鉴定

另一个常见用例是鉴定DUT在远端或RX侧的特征。过去,信号可能是直接采集和测量的,但随着数据传输速率的增加,眼图现已在远端闭合,使RX均衡成为必需。RX均衡用于张开采集信号的眼图,以便进行信号的特征鉴定和分析。分析功能可能包括参数化测量、抖动及眼图测量或协议解码。

有各种各样用于RX均衡的方法,包括CTLE、FFE或DFE。因为大多数下一代规范为"闭眼"情况,所以通常做法是指定参考均衡器。例如,PCI Express 3.0要求一个CTLE+1抽头DFE,这与新版本USB SuperSpeed的要求相同。该均衡器通常用于一致性测试和接收器校准,但并不是为了定义如何在硅芯片中实现均衡。

参考均衡器的使用对一致性测试足够了,但在许多情形中,系统设计人员需要利用其通道与专用硅芯片模型来鉴定其系统的特征。在此情况下,推荐RX硅芯片精密建模。过去,这是在示波器中通过使用内建均衡支持(包括CTLE、DFE或FFE)和匹配设置与硅芯片实现来进行的。但是,当鉴定系统的特征时,可能需要更准确的方法。

多年来,硅芯片厂商一直在努力寻找一种方法来向客户提供关于其均衡实现的信息,以便用于系统特征鉴定,避免对专用仿真工具的需要。作为标准解决方案,IBIS-AMI允许硅芯片厂商建立其硅芯片模型,以及使这些模型用于非专用仿真环境。

IBIS-AMI模型可与脉冲响应或时域波形一起使用。在使用示波器来处理模型的情形中使用了时域波形方法。大多数IBIS-AMI模型都要求每位样点数为整数。因为每位样点数取决于示波器的采样速率和输入数据信号的比特率,所以采集波形的整数每位样点数无法始终得到保证。要解决这个问题,可对波形进行重新采样,以支持每位8、16、32、64或128个样点。IBIS-AMI模型的配置如图6所示。

图6:此屏幕用于配置IBIS-AMI模型,以便使用示波器进行RX均衡特征鉴定。

下面的例子显示了通过背板采集的一个6Gb/s信号。采集信号的眼图完全闭合(如图7左侧的眼图所示)。在此测试点,一个选择是使用内建的均衡支持。例如,如果硅芯片实现了一个3抽头DFE,则能使用内建DFE功能在链路分析软件中指定DFE。不过也可以使用IBIS-AMI模型,该模型能更精密地匹配硅芯片实现。运用AMI模型后的信号显示在右侧眼图中。

图7:如左图所示,采集信号的眼图完全闭合。右图显示了运用IBIS-AMI RX均衡模型后的结果,该模型能更精密地匹配硅实现。

用于DDR的链路分析技术

链路分析传统上是针对高速串行应用;不过,在串行链路中使用的技术在其他领域(包括DDR内存)也能获得成功。通常,DDR信号是使用高阻抗探头来存取的,这会导致采集波形上的反射。链路分析软件可用于仿真对不同测试点的探测和消除由测量电路及不良信号存取点造成的反射。

图8显示了一种典型情景。采集波形存在由传输线和接收器输入之间的阻抗失配而造成的严重反射。如果不对采集波形进行任何后处理,则不可能对信号进行分析。

图8:由于传输线与接收器之间的阻抗失配,不可能对该DDR信号进行分析。

如前所述,为了去嵌反射,发射器、通道和接收器模型必须是已知的。但现实中常常难以获得针对所有链路元件的模型,在上面的情形中,可使用近似法来补偿采集信号上的反射。传输线时延和接收器负载阻抗可通过执行简单的定时和电压测量来估计。通过使用游标,可按下式计算反射/入射电压比:

在图7所示的波形中,V2 = 1.2V,V1 = 0.75V。因此,我们能够估计RX输入阻抗大概在200Ω。下一步是估计从实际探测位置到期望测量点的传输线时延。通过使用游标,得到往返反射时间660ps(如图9所示)。为了确定探测点与期望测试点之间的时间,我们将此数值除以2。

图9:带游标的DDR信号可用于测量往返反射时延,以近似实际探测位置与RX输入之间的传输线时延。

使用链路分析工具,我们能够估计测试点大概是在接收器的输入位置。这是通过指定传输线时延、接收器的封装模型以及接收器的输入阻抗来进行的。在此情形中,接收器的封装模型由一个4端口S参数模型定义。如果发射器、接收器和传输线的精确模型已知,则最终结果(如图10所示)会更准确。不过,基于使用

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top