微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > LXI测试系统中IEEE1588 的应用

LXI测试系统中IEEE1588 的应用

时间:10-29 来源:3721RD 点击:

源于IEEE 的基于时间的触发并非适应所有测试应用的灵丹妙药,它只是提供另一种触发机制。基于时间的触发要求事先排出仪器动作的时间表,但这并非永远可行。例如基于时间的触发不能用于响应异步事件,对于UUT引入的触发事件也是很差的选择。
通过在导线上发送电信号,LXI 支持基于LAN 的触发,这很像是传统的硬件触发。当接收装置收到信号时,就执行一个预先确定的行动。在许多应用中,基于LAN的触发可去掉杂乱的触发电缆,从而简化系统集成和实现流程式的装置升级。基于LAN触发强于传统的硬件触发,因为它能携带硬件触发不具备的时戳信息。LXI 仪器提供基于同步系统时钟的时戳,给予系统集成者事件何时发生或协调多个事件发生的时间记录。在实际应用中,它提出了一些重要的触发模型,如环形数据捕获缓冲器。此时可把一个LXI 装置编程为捕获环形缓冲器中的数据,就像逻辑分析仪所做的那样。当LAN触发到达时,数字化仪用包含在触发中的时戳"回看"发生在触发信号接收前的捕获事件时间。这项触发技术在过去大多数仪器中是不可能具备的。
IEEE 1588: 关键的促成技术
与测试系统集成商的讨论证实, IEEE 1588 通过提供原来没有的同步和时戳机制,能够简化集成工程师的任务。从历史上看,集成工程是通过为系统硬件编写专门的代码,以编程方式补偿延迟,但在更换硬件或电缆长度改变时,原来的代码就失去作用,而需要投入昂贵的查错和返工费用。随着集成者越来越熟悉 IEEE 1588,我们相信市场需求会促使它成为测试和测量行业的一项主导产品。对于许多应用来说,系统开发者不再需要校准和修正触发电缆延迟,并相信定时特性不会干扰脆弱的测试程序。
IEEE 1588 把时间概念带入网络,提供协调跨分布节点动作的机制。虽然IEEE 1588 定义了如何同步网络上的时钟,却没有说明如何施加这一同步。LXI通过定义如何在测试环境中进行而扩展了IEEE 1588 的基础。LXI 联盟定义了基于LAN和基于时间的触发特性,对如何施加基于时间的触发作了详细的API 描述。一个统一的LXI 触发模型允许测试程序员容易地在硬件、软件和时间感应触发间转换,通过减少硬件和电缆简化集成者的任务。
LXI 对等通信
IEEE 1588 和LXI 规范帮助启用对等的或模块 - 模块的通信。在LXI 出现前,大多数测试和测量系统体系结构依赖使用中央控制器的主从配置。除承载较快触发沿的基本触发线外,它们没有仪器至仪器的通信。每台仪器直接与控制器通信,然后把命令发送到其它仪器。这种在行业内存在多年的方式不能利用分布式计算机体系结构的多种优点。高通道数系统或基于控制器的测量应用让中央控制器承受很重的负担,这就造成了处理瓶颈,而难以很好利用高带宽IO,也达不到预期的性能级。有了LXI,仪器能实现独立于控制器的相互通信。这就能简化许多应用,如激励 - 响应测量。LXI允许系统设计者下载可执行代码,它由来自系统中的一台或多台其它仪器触发,让控制器处理数据,而不是执行控制任务。较少的系统管理得到系统响应更敏捷的结果。
也许LXI IEEE 1588 启用的对等通信带来的最大好处是能把测试软件与系统硬件脱钩。每一LXI 装置都知道自己的响应时间,这意味着它能事先把自己设置为执行命令或脚本,然后等待触发。装置可以多点传送命令,而不必了解谁在听取命令,装置也可听取命令,而不必了解是谁发送的命令,并过滤掉除所需命令外的其它内容。控制器和测试软件不需要知道装置的执行时间,也不必在任何事件前建造设置或延迟。我们现在拥有的系统允许装置的行为彼此独立或独立于控制器,这样,系统设计者和支持者在改变设备时就可不必改变任何测试代码。其结果是测试程序与底层硬件脱钩,实现了测试程序的透明性。
把LAN 和IEEE 1588 用于测试和测量应用
系统集成者发现IEEE 1558带来许多优点。有些是明显和容易想到的,例如在长距离上的同步能力。天线测试范围就属这种情况。但有些却不甚明显,如可在某些应用中去掉触发电缆,或是不需要校准和修正多条触发电缆的延迟。由于改变硬件不影响测试程序,因此这两种情况都能简化程序员的任务,使软件维护更为容易。在典型测试系统中,软件开发和维护的成本会低于硬件购置费。
IEEE 1588和LAN触发能代替部分,但非全部触发电缆。代替电缆的能力取决于测试系统的速度要求,而往往由被测装置决定。某些测试系统,例如测量温度、压力或机械激励的数据采集应用要求毫秒级或微秒级的分辨率,这正在今天IEEE 1588 的能力范围内。而有严格时间要求的应用,例如高速雷达和一些无线应用这类射频应用,以及示波器和逻辑分析仪的触发,都要求达到纳秒甚至亚纳秒的分辨率,这已超出今天IEEE 1588 的能力。基于IEEE 的触发也不能很好适用于具有快速异步或设备感应触发的应用。但这些应用也正是改进IEEE 1588 速度和分辨率的原动力。
用IEEE 1588提供时戳,仪器提供商和系统集成商就能使用环形缓冲技术"回放时间"和调查触发前的事件。这项技术已在逻辑分析仪和示波器中运用多年,IEEE 1588 使它能用于许多其它仪器和系统。自动的数据时戳意味着控制器和应用软件不再需要跟踪获取数据的时间,简化开发大型测试系统中这一繁琐和易错的环节。许多航空航天系统有成百上千条控制和数据线,可通过分布式的检测测试系统信号沿的暂停,从而去掉许多这样的信号线。这就简化了线缆和仪器至UUT的接口,缩短重配置时间,克服测试程序集,即通常称为TPS的脆弱性。想象一台有数千个传感器的仪器,用它来监视喷气引擎的复杂激励 - 响应通道。或考虑在飞机机身上贴有数千应变片的模态分析系统,在这些应用中,严格的定时关系是保持相邻点间相位关系的关键。使用时戳和并行执行,数据翻译和故障定位变得较为简单,测试能更快速地执行,许多困难的通道同步任务也变得易行。
测试和测量历来用普遍存在的高精度10 MHz 基准时钟协调仪器,特别是用于要求严格定时同步的激励 - 响应测量,IEEE 1588 目前还达不到这类应用所需要的稳定性,它提供的是对未来的承诺。与其类似,在电信应用中,我们开始看到IEEE 1588 同步出现在基础设施设备中,用它来代替或传播GPS定时。我们预期未来的测试仪器将会用这一定时基准进行复杂的解调或延迟传播的测量及监视,它也可优化蜂窝基础设施中所用宽带线性放大器的数字预失真算法。
LXI网络接口和Ethernet连通能力促成高度分布的应用。最吸引人的能力之一是对所需要地方的远程专业知识提供和支持。例如一位在芬兰Salo 的工程师不离开家,就能与在中国的同事合作,在同一仪器屏幕上查找问题,或是监视一个流程。这对于公司在不同地点沟通专业知识有深远的意义。
如前所述,LXI 的对等通信模型把测试程序与底层硬件资产相隔离,在系统增加新仪器时,它把测试设计师和系统支持人员从繁琐和昂贵的软件调整中解放出来。这对于系统生命期一般达到数十年,其间必须更换硬件资产的宇航_ 国防这类工业部门带来极为巨大的利益。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top