新一代智能计量仪表详解
• 计量部件的传感器
• 可处理传感器数据并计算出消耗的超低功耗 MCU
• 通信系统
• 电源系统
在现今的燃气表中,传感部分(图 4)可报告流量吞吐量(常通过一个舌簧开关)以及确切的燃气压力和温度测量值。MCU 主模块则处理传感器数据,并将燃气流量调节成标准化的数量以供客户计费之需。
通常情况下,还有一个可远程(如通过 wM-Bus 链接)控制的电动阀。此外,在一些国家也要求有预付费选项。
图 4:智能燃气表(频段为 169MHz 或 868MHz,wM-Bus 作为一个低于 1GHz 的 RF 链接)
对于水表和热表而言,目前最常用的传感器均通过测定旋转速度和方向来检测流量。
热表是一种有附加精确温度测量值的水表,用于捕获前向和后向流量的温度。添加 RF 子系统(如低于 1GHz 或 2.4GHz 的通信模块)的方式可使热表和水表"智能化"。
重要的是谨记水表、热表和燃气表均是通过电池供电的,这就意味着超低功耗是一个重要的考虑因素。由于这三种类型的仪表用来安放电池的空间极为有限,所以用于优化电池寿命的专用电源解决方案必不可少。
3. wM-Bus RF 子系统的硬件 (HW) 架构
根据所使用的频带或发射功率,wM-Bus 子系统可用于家域网 (HAN) 或邻域网 (NAN) 通信。HAN 实现的一个例子是带 868MHz RF 链接的智能仪表,采用了 wM-Bus 协议的 S、T、或新型 C 模式。在实际应用中,发射输出功率为 +10 至 +12dBm(在天线端口的测量值)且天线增益高达 +2dBi 的 RF 芯片(用于双向通信的收发器或用于单向通信的发射机专用器件)本身即可在+14 dBm EIRP 的 ETSI300220 限制范围内提供最佳的解决方案。
面向智能仪表的 NAN 解决方案通常工作在 169MHz 频段,该情况下 +27dBm EIRP 限制可实现卓越的覆盖范围。此外,频段为 869.525 MHz 的 C2 模式( 仅用于从数据收集器至仪表方向)可采用 +27dBm 限制子带,适合 NAN 应用。对 NAN 系统解决方案而言,由于目前尚没有可提供 +27dBm 发射输出功率的集成式 RF 收发器芯片,所以需要添加外部功率放大器。
wM-Bus 子系统硬件的两个变体型(基于 EIRP 功率限制):
1. 没有外部功率放大器(图 5 中的蓝色模块被去除)
2. 有外部功率放大器和可选的 LNA(如 TI 的 CC1190 @ 868MHz 或专用 RF 前端 @169MHz)
图 5:基于 TI MCU 与 RF 器件的 wM-Bus RF 子系统方框图
事实上,图 5 的 RF 子系统代表一个完整的 RF 模块,它一般通过 UART 连接到主控 MCU。在这种情况下,专用 MCU(橙色模块)将运行 wM-Bus 堆栈以及一个串行协议应用,以便连接到主应用 MCU。
第二个选项是让 wM-Bus 堆栈在应用 MCU 上运行并通过 SPI 接口连接到 RF 器件,完全避免串行协议应用(删除图 5 中的橙色模块)。提前弄清智能仪表的软硬件分区非常重要,因为两种架构都有优缺点,重点注意事项如下:
1. 计量部件和 wM-Bus 堆栈的认证。
2. 实时性要求:计量和 RF 通信均属时间关键型任务,有时甚至需要 MCU 同时运行计量和通信任务。
3. 固件的现场升级:适用于 RF 通信和/或整套仪表。
由于这些原因,制造商往往更喜欢分离计量和通信功能(双 MCU 的方法)来保持他们的系统模块化。通过独立的价格和/或性能优化,在选择 MCU 和 RF 器件时可实现更高的灵活性。通常情况下,有多个引脚兼容的 MCU 或 RF 衍生工具,可提供更高的性能和更多的功能。
单一的 MCU 解决方案可节省一些成本,但需要保护计量固件代码以防止被篡改或避免其它来源的操作或故障,所以常会使计量部件的认证更复杂。
4. 具有 FRAM 的超低功耗 MSP430 MCU - 可使功耗降低 50%
TI 新型"金刚狼"MSP430 微控制器产品系列在超低功耗方面真正有所突破,也为基于闪存的传统型 MCU 器件带来了多重优势。MSP430 FRAM MCU 比闪存写入速度提升 160 多倍,每比特能量消耗降低至少 250 倍,具有几乎无限的擦写次数(>1014次),在所有电源模式下均可确保数据保存能力,并借助统一的内存架构提供无与伦比的自由度。后者还允许开发人员为软件中的程序或数据存储改变内存分区,无需完全独立的 EEPROM 和电池供电型 SRAM。
采用这种基于 FRAM 的 MSP430 MCU 来运行 wM-Bus 堆栈是一种必然的选择,也是当今可用的最低功耗解决方案。根据功能而配置的wM-Bus 堆栈相对简单,能在 12 至 30KByte 代码间变化,可轻松安装于最新的 TI 金刚狼器件之内。FRAM 的逐位写入能力允许在现场的差分软件升级,可降低传输的数据量,从而能运行在比特率极低的 wM-Bus N 模式下,数据传输速率仅为 2.4 或 4.8kbps。
极低的功耗与快速写入能力相得益彰,可为 wM-Bus
- MSP430实现低功耗水文遥测终端机(08-09)
- ZigBee SoC的设计研究(11-21)
- 基于ATmega16单片机的数字电子秤的设计(09-12)
- 实现嵌入式系统集成射频:ZigBee的设计考虑因素(10-27)
- PVDF传感器和WSN的振动信号测量系统(04-05)
- 基于Cortex-M3的微控制器热电偶测量系统(01-15)