新型数字化故障录波器方案
保持独立。在此,为了实现对9-1和GOOSE协议数据链路层报文的处理,利用了VxWorks网络协议栈的MUX接口,如图3所示。
当网卡收到一个报文时,网卡驱动中实现的网卡中断服务函数将被调用。中断服务只负责最简单的底层操作,然后中断调用netJobAdd(),将接下来的工作排队加入网络服务队列,tNetTask任务将会从此队列中读出,完成任务级别的网络处理工作。其具体的处理方法根据不同的网络协议类型有所不同,开发人员可以通过MUX接口绑定对新的网络协议处理方法。
2.3 IEEE1588精密时钟同步协议
为了在后方的故障录波和常态录波下都能有精确的时间,采用IEEE1588精密时钟同步协议(PTP)。它是一种网络时间同步协议。
IEEE1588协议通过硬件和软件配合获得更精确的定时同步。它采用分层的主-从式(master-slave)模式,主要定义了4种时钟报文类型:同步报文(Sync)、跟随报文(Fellow-up)、延时要求报文(Delay-Req)、回应报文(Delay-Resp)。PTP系统中的从时钟就是通过与主时钟交换上述的4种报文来同步时间。
3 硬件设计
前端故障录波器协议转换器部分的硬件选择Freescale MPC8270处理器,其CPU主频为450 MHz,通信处理器(CPM)主频300 MHz,并且其自身具有3个快速以太网控制器(FCC)。在该本应用中使用了交换芯片进行扩展。后端的故障判断与录波设备采用IntelCore 2双核E4300 1.8 GHz.
4 软件设计
软件基于VxWorks操作系统,VxWorks具有良好的可靠性,高性能的内核以及很好的实时性。
4.1 IEC61850报文处理模块
IEC61850 9-1标准与GOOSE为了保证通信的实时性,都采用了数据链路层直接传输报文。在此利用VxWorks的MUX层接口实现从数据链路层将IEC61850协议数据传输给应用层程序。由于在IEC61850协议中规定帧结构中含有虚拟局域网标记TPID和TCI,在帧经过交换机时可能会被去掉也可能保留。因而在MUX层绑定网络协议类型处理函数时需要对9-1协议(ethertype 0x88b8),GOOSE协议(ethertype 0x88ba),以及虚拟局域网标记(0x8100)都进行绑定,并在后续的处理中对类型为0x8100的报文特别处理,判断其真实的协议类型,以免误判。
9-1是一个点对点的协议。在故障录波器的应用场景中,由于必须监控全站的大量线路,前端需要集中器将9-1数据合并,而合并后的数据格式目前并没有统一的标准。在此对于9-1协议解析进行了模块化设计,将报文的解析独立出来,使其很容易增加对其他类型9-1扩展协议的支持。
4.2 传统数据报文模块
该应用中对于传统站,将由前方的采集设备采样模拟量和开关量数据,通过TCP协议发送到录波器。录波器将对其解析后封装为与IEC61 850相兼容的数据格式,以便后方设备进行启动判断与存储。
4.3 同步模块
9-1数据来自合并单元,而开关量采样数据来自保护控制单元,两者的数据源不同,发送的报文格式也不同。IEC-61850中定义的GOOSE报文,每帧报文中含有详细的绝对时间,但报文只有在开关量发生变位时才发送,在开关量变位后,则建议按指数递增的时间间隔发送,因而接受到GOOSE报文的时刻是不定的。在某些实际应用中,甚至可能发生保护装置未进行同步,造成GOOSE报文中的时间戳不准的情况。另一方面,故障录波需要全站的大量开关量数据,而单一保护控制单元发送的GOOSE报文只包含其中的一部分,需要将不同来源的GOOSE报文进行同步和组合。包含模拟量采样值的9-1报文通过合并单元后虽然具有录波所需要的全部模拟采样值数据,也按照固定的采样频率均匀发送,但其中仅含有秒的等分序号,而没有绝对的时间信息。因此必须要将不同源的开关量之间、以及开关量和模拟量之间进行同步合并,对数据整体加入绝对时刻。在设计同步方案时,充分考虑到开关量的数据更新频率远远小于开关量数据读取频率,即绝大多数的同步工作都是将保存的开关量与当前收到的模拟量采样值进行合并,只在低频率的GOOSE报文来临时才需要更新保存的开关量值。在该设计中,高频率的模拟量数据到需要和开关量合并时,保存开关量的堆栈中将只含有最近的一次或之前少数几次开关量状态,模拟量数据将以极大的概率直接与最近的开关量时间匹配,维护此堆栈的空间开销和时间开销都很小。具体流程图如图5所示。
4.4 数据通信模块设计
该模块将同步好的全站模拟量采样值与开关量加入时间戳,通过TCP连接发送给启动判断与存储设备,保证数据及时间的正确性并简化后端的实现。
4.5 时间同步模块
按照IEEE1588的规定,首先由主时钟节点向从时钟节点发送带主时钟时间戳的同步报文(Sync),同时主时钟节点记录下同步报文实际发送的时间戳,
- SoC的发展将使测试与测量设备嵌入芯片(10-21)
- 网络系统方案的可靠性测试 (04-25)
- 网络协议一致性测试平台设计(07-09)
- 基于虚拟仪器的运动位移测量系统的实现(07-26)
- 基于USB接口的电化学沉积仪器数据采集系统的研究(11-13)
- 3G底层核心实时状态检测模块的设计 (05-12)