超低电压能量收集器采用热电发生器为无电池无线传感器供电
图 13:由一个 TEG 来供电的无线传感器应用
在图 13 所示的例子中,2.2V LDO 输出负责给微处理器供电,而 VOUT 利用VS1 和 VS2 引脚设置为 3.3V,以给 RF 发送器供电。开关 VOUT (VOUT2) 由微处理器控制,以仅在需要时给 3.3V 传感器供电。当VOUT 达到其稳定值的 93% 时,PGOOD 输出将向微处理器发出指示信号。为了在输入电压不存在时保持运作,在后台从 VSTORE 引脚给 0.1F 存储电容器充电。这个电容器可以一路充电至高达 VAUX 并联稳压器的 5.25V 箝位电压。如果失去了输入电压电源,那么就自动地由存储电容器提供能量,以给该 IC 供电,并保持 VLDO 和 VOUT 的稳定。
在本例中,根据下面的公式来确定 COUT 存储电容器的大小,以在 10ms 的持续时间内支持15mA 的总负载脉冲,从而在负载脉冲期间允许 VOUT 有 0.33V 的下降。请注意,IPULSE 包括 VLDO 和 VOUT2 以及 VOUT 上的负载,但可用的充电电流未包括在内,因为与负载相比,它可能非常小。
COUT(μF) = IPULSE (mA) • tPULSE (ms) / dVOUT
考虑到这些要求,COUT 至少须为 454μF,因此选择了一个 470μF 的电容器。
采用所示的 TEG,在 ΔT 为 5ºC 时工作,那么 LTC3108 在 3.3V 时可提供的平均充电电流约为 560μA。利用这些数据,我们可以计算出,首次给 VOUT 存储电容器充电需要花多长时间,以及该电路能以多大的频度发送脉冲。假定在充电阶段中 VLDO 和 VOUT 上的负载非常小 (相对于 560μA),那么 VOUT 最初的充电时间为:
tCHARGE = 470μF • 3.3V / 560μA = 2.77s
假定发送脉冲之间的负载电流非常小,那么一种简单估计最大容许发送速率的方法是用可从 LTC3108 获得的平均输出功率 (在本例情况下为 3.3V • 560μA = 1.85mW) 除以脉冲期间所需的功率 (在本例情况下为 3.3V • 15mA = 49.5mW)。收集器能够支持的最大占空比为 1.85mW / 49.5mW = 0.037 或 3.7%。因此最大脉冲发送速率为 0.01 / 0.037 = 0.27s 或约为 3.7Hz。
请注意,如果平均负载电流 (如发送速率所决定的那样) 是收集器所能支持的最大电流,那么将没有剩余的收集能量用于给存储电容器充电 (如果需要存储能力的话)。因此,在这个例子中,发送速率设定为 2Hz,从而留出几乎一半的可用能量给存储电容器充电。在该场合中,VSTORE 电容器提供的存储时间利用以下公式来计算:
tSTORE = 0.1F • (5.25V - 3.3V) / (6μA + 15mA • 0.01 / 0.5) = 637s
上述计算包括 LTC3108 所需的6μA静态电流,而且假定发送脉冲之间的负载极小。在此场合中,一旦存储电容器达到满充电状态,它就能以 2Hz 的发送速率支持负载达 637s 的时间,或支持总共 1274 个发送脉冲。
利用后备电池的超低功率应用
有些应用或许没有脉冲负载,但却可能需要连续工作。传统上,此类应用由一个小型主电池 (比如:3V币形锂电池) 来供电。假如功率需求足够低,那么这些应用就能够利用热能收集来连续供电,或者可以借助热能收集来极大地延长电池的使用寿命,从而降低维护成本。
图 14 示出了一种利用后备电池来驱动一个连续负载的能量收集应用。在该例中,所有的电子线路均全部由 2.2V LDO 输出来供电,且总电流消耗小于 200μA,只要 TEG 上至少存在 3ºC 的温度差,LTC3108 就能连续地给负载供电。在这些条件下,电池上没有负载。当可用的收集能量不够时,3V锂电池将无缝地"接管"并给负载供电。
图 14:具有后备电池的能量收集器
能量存储替代方案
对于那些选用可再充电电池来替代主电池以提供备份或能量存储的应用,图 14 中的二极管可以去掉,并用可再充电的镍电池或锂离子电池 (包括新型可再充电薄膜锂电池) 来替换锂电池。如果采用的是可再充电的镍电池,则其自放电电流必须小于 LTC3108 所能供应的平均充电电流。如果选用锂离子电池,则需要增设额外的电路以保护其免遭过度充电和过度放电的损坏。另外还有一种存储替代方案就是具有 5.25V 额定电压的超级电容器,例如:Cooper-Bussman PB-5ROH104-R。与可再充电电池相比,超级电容器的优势在于拥有更多的充 / 放电次数,而缺点则是能量密度低得多。
热量收集应用需要自动极性
有些应用 (例如:无线 HVAC 传感器或地热供电的传感器) 对能量收集功率转换器提出了另一种独特的挑战。此类应用要求能量收集电源管理器不仅能够依靠非常低的输入电压来工作,而且能以任一极性工作,因为 TEG 上的 ?T 的极性可能改变。这是一个特别棘手的难题,而且,在几十或几百 mV 的电压条件下,二极管桥式整流器不是合适的选项。
- 克尔斯博无线传感器在电力系统的应用(04-16)
- 基于电量均衡的无线传感器网络分簇算法(04-09)
- 八通道串口数据采集与处理虚拟仪器系统设计(04-24)
- 基于ZigBee无线传感器网络的工业污水监测系统的设计(10-29)
- 基于物联网的智能楼宇变形沉降监测系统(04-18)
- 采用LabVIEW和NI无线传感器网络监测一座名胜古迹(07-09)