微波EDA网,见证研发工程师的成长!
首页 > 测试测量 > 测试测量技术文库 > 一种基于人工神经元实时谐波电流数字检测方法

一种基于人工神经元实时谐波电流数字检测方法

时间:12-01 来源:测控网 点击:

式中T为频率固定的电压的周期,T′为采样周期。图4为正交函数输入的电压频率固定的神经元自适应谐波检测方法的框图。

  2.3 基于人工神经元自适应的谐波检测方法的实现

  在这里,神经元为离散型输入,这里权值w为模拟量,在区间[-1,1]之间取随机值,采样周期取2000HZ,初始阀值为零,学习率先选h=0.11,以后再根据实验结果进行调整,惯性系数为a=0.1。

  其中数组x(120),y(120)分别为电压、电流采样后保存在PC机内存的数值。

  3 实验结果

  本实验将Pentium的CPU、主频率为100MHz、内存为8MB的PC兼容机,作为数据计算的硬件,将PCL-818L多功能卡作为集数据采样、A/D转换、数据传输硬件。由于单位方波具有代表性,本文使用单位方波非线性负载电流做实验。

  3.1 无时延的人工神经元谐波和无功检测方法实验结果

  3.1.1单位方波非线性负载电流的实验结果

  通过大量地实验研究,发现对于不同的h值,计算的结果与实验结果的误差不同,当h=0.04,a=0.01时,ir趋近i1p,id逼近ic,误差也很小,详见图5。图5是初始权值为在-1到1的随机值,初始阀值为零。利用电源电压作为参考输入,采样频率为2000Hz(下面实验都为2000Hz)对幅值为1的方波非线性负载电流计算它的谐波及无功电流的实验结果。为了了解及验证实验的结果,在图中同时画了ic(检测值)和i1p(由理论计算得到的)的波形,图5.b为从图5.a中分

  

  离出来的有功电流,谐波及无功电流的波形示于图5.c中,图5.d为检测出的谐波及无功电流与理论值之间的误差。由图5可以明显地看出在第一个周期内无论是有功电流还是谐波及无功电流都与理论值有一定的差别,大约在第二个周期它们的差别就不太大了,计算有功电流ir逼近其理论值i1p、而计算谐波及无功电流id趋近于理论广义无功电流ic,它们的误差在第二周期以后仅仅在0.1A以下,约占总电流的5%左右,从上述两种结果可以看出,神经元的学习率h合理选择对神经元的学习收敛具有较大的影响,合理的学习率h选择可以加速收敛。

  3.1.2 频率变化的方波非线性负载电流的实验结果

  详见图6。该结果是在h=0.04,a=0.01条件下,从新启动系统,在第三个周期改变负载电流的频率,从50Hz变为55Hz。从图6.b、6.c及6.d中可以清楚地看出:频率对无延迟神经元谐波检测系统来说影响不大,也就是说,该方法对频率的变化有较强的适应性,能够几乎完全跟随频率的变化,有功电流、谐波及无功电流都能随着频率的变化而变化,误差率没有因为频率改变而变化。

  

  

  图5 h=0.04时无时延谐波检测实验结果

  

  

  图6频率变化时无时延谐波检测结果

  3.2正交函数输入的神经元自适应谐波检测方法

  3.2.2 负载电流变化的方波检测结果

  结果详见图7。从图7.b和图7.c中可以看出,当负载电流从1A突变到0.5A时,大约经过一个周期的适应,计算基波电流ir和谐波电流id逼近它们的理论值i1、ih,说明这种方法对负载电流变化的跟随性也比较好。从误差曲线图7.d看,在负载电流变化的第二周期,误差就小于0.1A了。

  3.2.3 频率变化的方波非线性负载电流检测结果

   从图8中可以清楚地看出,正交函数作为参考输入的神经元自适应谐波检测系统对频率变化不"敏感",在频率变化时,不会产生突变,能够迅速跟随频率变化,在图8.b、8.c中计算基波电流ir和谐波电流id与紧密地随着它们的理论电流i1、ic变化而变化。因此,系统始终具有对被检测的负载电流频率自动跟随能力。

  

  

  图7 方波非线性负载变化时检测结果

  

  

  图8 频率变化方波负载电流检测结果

  4 结论

  综上所述,实验结果证明了所提出的无时延的神经元自适应谐波和无功电流检测方法以及正交输入神经元自适应谐波电流检测方法的正确性,所提出的方法对负载电流的频率变化及幅值变化具有自适应性,证明了所提出的方法具有良好的实时性。从而本文所提出的方法确实可行。

  参考文献:

  [1] Joseph S.Subjak et al., Harmonics-causes, effects, measurements, and analysis; An Update, IEEE Trans. on Ind. April, VOL.26, NO.6, 1034-1042, Nov./Dec. 1990

  [2] D.V.Bose, Harmonics analysis and suppression for electrical system supplying static converter and other nonlinear loads, IEEE Trans. on Ind. April, vol.15, NO.5, 1979

  [3] 汤红诚 张晓清 冯璞乔,谐波及无功电流实时检测方法的现状和展望,后勤工程学院学报,VOL.14,NO.3,48-53,1998

  [4] 罗世国,有源电力滤波器的研究,博士学位论文,重庆大学, 1~2,1993

[5] John R. Glover, Adaptive Noise Canceling Applied to Sinusoidal Interference, IEE

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top