电磁炉温度及电源控制方案
电磁炉由于其清洁、使用方便等优点,进入百姓家庭,被人们所接受,由于其带来的辐射很大,在日常生活中需要正确使用电磁炉,打开后要远离电磁炉,合理选择温度档,满足粥、菜等多种需要。电磁炉也可以用于工业环境,实现温度的自动控制,本文介绍一种实现电磁炉温度自动控制的方法。
电磁炉
电磁炉是一种利用电磁感应原理将电能转换为热能的厨房电器。在电磁炉内部,由整流电路将50/60Hz的交流电压变成直流电压,再经过控制电路将直流电压转换成频率为20~40KHz的高频电压,高速变化的电流流过线圈会产生高速变化的磁场,当磁场内的磁力线通过金属器皿(导磁又导电材料)底部金属体内产生无数的小涡流,使器皿本身自行高速发热,然后再加热器皿内的物品。
电磁炉的硬件结构主要有主电源回路、振荡电路、PWM脉宽调控电路、加热开关控制电路、VAC检测电路、电流检测电路、浪涌电压监测电路、过零检测、锅底温度监测电路、IGBT温度监测电路、散热单元、CPU控制回路、LED按键指示回路等组成。
主电源回路电源经保险丝,再通过滤波电路,通过电流互感器至桥式整流器,产生的脉动直流电压通过扼流线圈提供给主回路使用,电压除送至辅助电源使用外,另外还通过二极管整流得到脉动直流电压作检测用途。辅助电源AC220V 50/60Hz电压接入变压器初级线圈,次级两绕组分别产生13.5V和23V交流电压。13.5V交流电压由桥式整流电路整流、滤波,获得的直流电压VCC除供给散热风扇使用外,还经由三端稳压IC稳压、滤波,产生+5V电压供控制电路使用。23V交流电压由桥式整流电路整流、滤波后,再通过串联型稳压滤波电路,产生+22V电压供IC2和IGBT激励电路使用。
振荡电路由PWM脉宽调控电路控制,CPU控制电路通过控制PWM脉宽,通过振荡电路进而实现对电磁炉的加热功率控制。
当不加热时,使IGBT激励电路停止输出,IGBT截止,则加热停止,当加热时,间隔输出PWM试探信号,同时CPU通过分析电流检测电路和VAC检测电路反馈的电压信息、VCE检测电路反馈的电压波形变化情况,判断是否己放入适合的锅具,如果判断己放入适合的锅具,输出正常的PWM信号,电磁炉进入正常加热状态,如果电流检测电路、VAC及VCE电路反馈的信息,不符合条件,CPU会判定为所放入的锅具不符或无锅,则继续输出PWM试探信号,同时发出指示无锅的报知信息,如1分钟内仍不符合条件,则关机。
浪涌电压监测电路满足以下功能:当电源正常时,振荡电路可以输出脉冲信号,当有浪涌电压输出时,停止加热,待电压正常时,正常加热。
锅底温度监测电路是通过紧贴玻璃板底的负温度系数热敏电阻对锅底的温度进行采集,热敏电阻的电压变化反映了加热锅具的温度变化,CPU通过监测该电压的变化发出相应的动作。
IGBT温度监测电路原理与锅底温度监测电路相同,将负温度系数的热敏电阻紧贴在IGBT的散热片上,对IGBT的温度进行采样。
散热单元由散热片和风扇组成,LED按键指示回路由按键、LED、按键移位控制芯片等组成。
CPU控制回路,通过对外电源监测、锅是否放在电磁炉上等采样,发出指令,进行加热,通过对温度的采样,实现功率控制,形成一个完整的闭环系统。
系统硬件
系统硬件包括电磁炉、单片机显示控制模块、温度传感器。市场上的电磁炉、温度传感器能满足要求,单片机显示控制模块采用宏晶公司的STC12c5410AD、液晶CSD19264B、时钟芯片等。
用温度传感器监测容器中的温度,控制器实时采集,同时将实时温度值在显示器上显示,记录时间、设定值、保持时间等信息供使用人员使用。
结语
对现有电磁炉进行改进,给人们的生活带来方便,增加一部分电子元器件,增加成本不高,高端电磁炉可以采用这些方案,进行试推广,满足各种人群的需要。
这些方案可以集成在原电路中,用一片CPU来控制,节约成本,增加的这些功能更能满足人们的需要。
- 保养不当成祸害 电磁炉如何安全使用(01-09)
- 揭开神秘面纱!主流电磁炉内部拆解(01-13)
- 电磁炉工作原理详细介绍(01-24)
- 基于单片机的恒温水龙头设计(11-06)
- 化纤组合式空调控制系统设计(11-17)
- 基于ATmega16的无线温度监测系统设计(06-23)