微波EDA网,见证研发工程师的成长!
首页 > 应用设计 > 消费类电子 > 关于摄像头产品的术语详解

关于摄像头产品的术语详解

时间:03-01 来源:中国通讯信息网 点击:
己的需要选择一款像素适合自己的产品。

值得注意的一点:有些分辨率的标识是指这些产品利用软件所能达到的插值分辨率,虽然说也能适当提高所得图像的精度,但和硬件分辨率相比还是有着一定的差距的。 最大帧数: 帧数就是在 1 秒钟时间里传输的图片的张数,也可以理解为图形处理器每秒钟能够刷新几次,通常用fps ( Frames Per Second )表示。每一帧都是静止的图象,快速连续地显示帧便形成了运动的假象。高的帧率可以得到更流畅逼真的动画。每秒钟帧数( fps )愈多,所显示的动作就会愈流畅。要避免动作不流畅的最低 fps 是 30 。除了 30fps 外,有些计算机视频格式,例如 AVI ,每秒只能提供 15 帧。我们之所以能够利用摄像头来看到连续不断的影像,是因为影像传感器不断摄取画面并传输到屏幕上来,当传输速度达到一定的水平时,人眼就无法辨别画面之间的时间间隙,所以大家可以看到连续动态的画面。

色彩位数: 色彩位数又称彩色深度,摄像头的彩色深度指标反映了摄像头能正确记录色调有多少,色彩位数的值越高,就越可能更真实地还原亮部及暗部的细节。 色彩位数以二进制的位( bit )为单位,用位的多少表示色彩数的多少。目前所有的摄像头的色彩位数都达到了 24 位(也就是能表达 2 的 24 次方种颜色),可以生成真彩色的图象。色彩位数高,就可以得到更大的色彩动态范围。也就是说,对颜色的区分能够更加细腻。 摄像头最常见的是 24 位, 30 位的摄像头极少见到。具体来说,一般摄像头中每种基色采用 8 位或 10 位表示,三种基色红、绿、蓝总的色彩位数为基色位数乘以 3 ,即 8×3=24 位或者 10×3=30 位。摄像头色彩位数反映了摄像头能正确表示色彩的多少,以 24 位为例,三基色 ( 红、绿、蓝 ) 各占 8 位二进制数,也就是说红色可以分为 2 的 8 次方 =256 个不同的等级,绿色和蓝色也是一样。那么它们的组合为 256×256×256=16777216 ,即大约 1600 万种颜色,而 30 位可以表示 10 亿种。色彩深度值越高,就越能真实地还原色彩。

成像距离: 要了解摄像头的成像距离需要引进一个超焦距的概念。超焦距是指对焦点以后的能清晰成像的距离。摄像头一般都是利用了超焦距的原理,即短焦镜头在一定距离之后的景物都能比较清晰成像的特点,省去对焦功能。当然这个 " 清晰 " 不是一个绝对的概念,超焦距范围内的景物并非真正的清晰成像。由于景物不在对焦点上,因此模糊是肯定的,只是模糊的程度一般人能够接受而已。 摄像头成像距离就是指摄像头可以相对清晰成像的最近距离到无限远这一范围。 例如有的摄像头其成像距离是 5cm 到无限远,即表示 5cm 是最近的成像距离,此距离以后的景物都会是相对清晰的。对于一般用户来说,如果只是安装在电脑上进行视频聊天的话,那么一般 5cm 到无限远的 " 超焦距 " 模式对焦已经可以满足要求了。

对焦方式与范围: 摄像头的对焦方式一般是指手动对焦以及自动对焦。 手动对焦通常是需要用户对摄像头的对焦距离进行手动选择。而自动对焦则是由摄像头对拍摄物体进行检测,确定物体的位置并驱动镜头的镜片进行对焦。 对焦范围是指摄像头能够完成聚焦的最近点到最远点的这一个范围。 例如有的摄像头的对焦范围是 15cm 到无限远,也就是说它最近的对焦距离是 15cm ,而在 15cm 以内这一范围是无法完成聚焦的,即使能聚焦,所成的图像也不清晰。

镜头: 摄像头的镜头是将拍摄景物在传感器( CCD 或 CMOS )上成像的器件,它通常由由几片透镜组成。 从材质上看,摄像头的镜头可分为塑胶透镜( Plastic )和玻璃透镜( Glass )。 通常摄像头用的镜头构造有: 1P 、 2P 、 1G 1P 、 1G 2P 、 2G 2P 、 4G 等(此处的 P 、 G 分别代表塑胶透镜和玻璃透镜,如 1G 1P 表示这款摄像头的镜头由一片塑胶透镜和一片玻璃透镜组成)。透镜越多,成本越高;玻璃透镜比塑胶贵。因此一个品质好的摄像头应该是采用玻璃镜头,成像效果就相对塑胶镜头会好,玻璃透光性以及成像质量都具有较大优势,比较常使用在较为高端的摄像头上。现在市场上的大多摄像头产品为了降低成本,一般会采用塑胶镜头或半塑胶半玻璃镜头(即: 1P 、 2P 、 1G 1P 、 1G 2P 等)。 镜头通常有两个较为重要的参数。一个是光圈 ,它是安装在镜头上控制通过镜头到达传感器的光线多少的装置,除了控制通光量,光圈还具有控制景深的功能,即光圈越大,则景深越小。

另一个是焦距 ,它基本上就是从镜头的中心点到传感器平面上所形成的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top