各种平板显示技术简介 (下)
TFT就是"Thin Film Transistor"的简称,一般代指薄膜液晶显示器,而实际上指的是薄膜晶体管(矩阵)-- 可以"主动的"对屏幕上的各个独立的像素进行控制,这也就是所谓的主动矩阵TFT(active matrix TFT)的来历。那么图像究竟是怎么产生的呢?基本原理很简单:显示屏由许多可以发出任意颜色的光线的像素组成,只要控制各个像素显示相应的颜色就能达到目的了。在TFT LCD中一般采用背光技术,为了能精确地控制每一个像素的颜色和亮度就需要在每一个像素之后安装一个类似百叶窗的开关,当"百叶窗"打开时光线可以透过来,而"百叶窗"关上后光线就无法透过来。当然,在技术上实际上实现起来就不像刚才说的那么简单.
目前使用的最普遍的是扭曲向列TFT液晶显示器(Twisted Nematic TFT LCD),来讲解一下TFT的基本原理。一个成品TFT显示屏,一般由一个夹层组成,组成这个夹层的每一层大致是偏光板、彩色滤光片组成,这两层之间就是液晶层。偏光板、彩色滤光片决定了多少光可以通过以及生成何种颜色的光。这个夹层位于两层玻璃基板之间。在上层玻璃基板上有FED晶体管,而下层是共同电极,他们共同作用可以生成能精确控制的电场,电场决定了液晶的排列方式。 大家知道三原色,所以构成显示屏上的每个像素需上面介绍的三个类似的基本组件来构成,分别控制红、绿、蓝三种颜色。
在上、下两层上都有沟槽,其中上层的沟槽是纵向排列,而下层是横向排列的。而下层是横向排列的。当不加电压液晶处于自然状态,从发光图3扭曲向列TFT显示器工作原理图示意图层发散过来的光线通过夹层之后,会发生90度的扭曲,从而能在下层顺利透过。
当两层之间加上电压之后,就会生成一个电场,这时液晶都会垂直排列,所以光线不会发生扭转--结果就是光线无法通过下层。
TFT像素架构,彩色滤光镜依据颜色分为红、绿、蓝三种,依次排列在玻璃基板上组成一组(dot pitch)对应一个像素每一个单色滤光镜称之为子像素(sub-pixel)。也就是说,如果一个TFT显示器最大支持1280×1024分辨率的话,那么至少需要1280×3×1024个子像素和晶体管。对于一个15英寸的TFT显示器(1024×768)那么一个像素大约是0.0188英寸(相当于0.30mm),对于18.1英寸的TFT显示器而言(1280×1024),就是0.011英寸(相当于0.28mm)
我们知道,像素对于显示器是有决定意义的,每个像素越小显示器可能达到的最大分辨率就会越大。不过由于晶体管物理特性的限制,目前TFT每个像素的大小基本就是0.0117英寸(0.297mm),所以对于15英寸的显示器来说,分辨率最大只有1280×1024。
产品应用
TFT LCD由于它的体积小、重量轻、无辐射等优点,在很多领域得到广泛应用。
* 电子仪器、仪表
* 文字处理机
* 电子手表、计算器
* 笔记本电脑、平板电脑
* 台式电脑监视器
* 工业监视器
* 摄像机、数码相机
* 投影显示
* 车载或便携式VCD、DVD
* 手机屏、PDA 、GPS
* 液晶电视、高清晰度数字电视
TFT显示器工作示意图(左为关,右为开)
象素示意图
DLP
技术原理
DLP(Digital Light Processor)数码光输处理器包括数码微镜元件(DMD)、光源、彩色滤波器系统、冷却系统、照明及投射光学镜头。DLP投影机以DMD(Digital Micormirror Device)数字微镜作为成像器件. 单片DMD由很多微镜组成,每个微镜对应一个像素点 ,DLP投影机的物理分辨率就是由微镜的数目决定的。其工作过程如下:光源所发白光,经分色轮着色,被分成不同时段的红绿蓝三束色光。三色光经DMD反射成像,最后三色像分时间先后进行叠加,还原出原色投放屏幕。
DMD可形容是一个半导体光开关制。数万个微小的四方镜面(16×16MM)组合在有铰式记忆系统(SRAM)上面。每块镜能开关一个光的像素。铰可让镜面呈两种情况倾斜:开进+10度:关时-10度;当镜面不工作时停在静止的0度。根据应用,DLP系统可接受数码或模拟讯号。模拟讯号在DLP中或原厂器材前端处理器中转换成数码。任何错杂的影视讯号均会经过处理变成一个完整画幅的视频讯号,从这里,讯号通过DLP影视处理转变成累进的红、绿、蓝(RGB)数据,然后这些数据形成整个二位元比特(0和1)数据面。一旦影视和图解讯号变成数码形式即传送到DMD,每个讯息的像素以1:1比率直接在它自己的镜面上制图,以数码控制极为准确。
技术特点
技术优点:
DLP显示板的优点是它们有极快的响应时间。你可以在显示一帧图像时将独立的像素开关很多次。它使利用一块显示板通过逐场过滤(field-sequential)方式产生真彩图像。步骤如下:首先,绿光照射到面板上,机械镜子进行调整来显示图像的绿色像素数据。 然后镜子再次为图像的红色和蓝色的像素数据进行调整。(一些投影仪通过使用第四种白色区域来增加图像的亮度并获得明亮的色调。)所有这些发生得如此之快,以致人的眼睛无法察觉。循序出现的不同颜色的图像在大脑中重新组合起来形成一个完整的全彩色的图像。
对高质量的投影系统,可以使用3块DLP显示板。每块板分别被被打上红色、绿色和蓝色,图像被重组为一个单一的真彩色的图像。这种技术已经被用在一些数字电影院中的大型投影设备上。DLP显示板有高分辨率而且非常可靠。 它们的对比度大约是多晶硅LCD投影仪的两倍,这使它们在明亮的房间中更有效。
技术缺点:
DLP本身几乎没有什么问题,但是它们比多晶硅面板更贵。当你仔细观察屏幕上移动的点的时候,(尤其是在黑色背景上的白点),你会发现采用逐场过滤方式的图像将会分解为不同的颜色。使用投影机时,电机带动色轮旋转时会发出一定的噪音。现在市面上的一种新的固态滤色系统可以较好的解决这个问题。
- STN技术解析(09-03)
- 各种显示方式原理介绍(11-26)
- 液晶电视屏幕类型逐个深入解析 (01-31)
- 智能家用远程控制仪的设计与实现(05-13)
- OLED显示器及其馈电技术(08-13)
- OLED显示模块与C8051F单片机的接口设计(08-14)