常见无线电测向体制概述
机、H型天线测向机等,属于间接旋转测向天线方向图。间接旋转测向天线方向图,是通过手动或电气旋转角度计实现的。手持或佩带式测向机通常也是属于幅度比较式测向体制。这是不再赘述。
幅度比较式测向体制的特点:测向原理直观明了,一般来说系统相对简单,体积小,重量轻,价格便宜。小基础测向体制(阿德考克)存在间距误差和极化误差,抗波前失真的能力受到限制。频率覆盖范围、测向灵敏度、准确度、测向时效、抗多径能力和抗干扰能力等重要指标,要根据具体情况做具体分析。
二、沃特森-瓦特测向体制
沃特森-瓦特测向体制的工作原理:沃特森-瓦特测向机实际上也是属于幅度比较式的测向体制,但是它在测向时不是采用直接或间接旋转天线方向图,而是采用计算求解或显示反正切值。鉴于它在测向机家族中的特殊地位和目前仍然在广泛应用,所以在此单独说明。基本公式同公式(1)。正交的(Sinθ、Cosθ)测向天线信号,分别经过两部幅度、相位特性相同的接收机进行变频、放大,最后求解或显示反正切值,解出或显示来波方向。属于沃特森瓦特测向机的有:多信道沃特森-瓦特测向机、单信道沃特森-瓦特测向机。这里所说的多信道,通常是指三信道,另外一个信道的作用是与全向天线相接,以解决"180度不确定性"和"值班收信"问题。多信道沃特森-瓦特测向原理方框图如图(7)所示。
图7、多信道沃特森-瓦特框图
单信道沃特森-瓦特测向机是将正交的测向天线信号,分别经过两个低频信号进行调制,而后通过单信道接收机变频、放大,解调出方向信息信号,然后求解或显示反正切值,给出来波方向。单信道沃特森-瓦特测向机原理方框图如图(8)所示。
图8、单信道沃特森-瓦特框图
沃特森-瓦特测向体制的特点:多信道沃特森-瓦特测向机测向时效高,速度快,在良好场地上测向准确,而且CRT显示方式,还可以分辨同信道干扰。该体制测向天线属于小基础,测向灵敏度和抗波前失真受到限制。多信道体制系统复杂;双信道接收机实现幅度、相位一致,有一定技术难度;单信道体制同属于小基础,系统简单,体积小,重量轻,但是测向速度受到一定限制。
三、干涉仪测向体制
干涉仪测向体制的测向原理是:依据电波在行进中,从不同方向来的电波到达测向天线阵时,在空间上各测向天线单元接收的相位不同,因而相互间的相位差也不同,通过测定来波相位和相位差,即可确定来波方向。基本公式如公式(2)所示,设Φ1,Φ3,Φ2,Φ4分别为北、南、东、西天线感应信号瞬时相位,于是有:
Φ13=Φ1-Φ3=k*sinθcosεΦ24=Φ2-Φ4=k*sinθcosε
(2)
上式中:Φ13、Φ24分别为北-南、东-西天线之间来波的相位差,k为相移常数,θ为欲求来波方向角。
在干涉仪测向方式中,是直接测量测向天线感应电压的相位,而后求解相位差,由公式(2)可见与幅度比较式测向的公式十分相似。
为了能够单值地确定电磁波来波的方向,干涉仪测向在工作时,至少需要在空间架设三付分立的测向天线。干涉仪测向是在±180度范围内单值地测量相位,当天线间距比较小时,相位差的分辨能力受到限制,天线间距大于0.5个波长时,会引起相位模糊。通常解决上述矛盾的方法是,沿着每个主基线插入一个或多个附加阵元,这些附加阵元提供附加相位测量数据,由这些附加相位数据,解决主基线相位测量中的模糊问题。这种变基线的技术已经为当代干涉仪测向机所广泛采用。干涉仪测向机的测向原理方框图如图(9)所示。
图9、干涉仪测向原理框图
相关干涉仪测向,是干涉仪测向的一种,它的测向原理是:在测向天线阵列工作频率范围内和360度方向上,各按一定规律设点,同时在频率间隔和方位间隔上,建立样本群,在测向时,将所测得的数据与样本群进行相关运算和插值处理,以获得来波信号方向。
干涉仪测向体制的特点:采用变基线技术,可以使用中、大基础天线阵,采用多信道接收机、计算机和FFT技术,使得该体制测向灵敏度高,测向准确度高,测向速度快,可测仰角,有一定的抗波前失真能力。该体制极化误差不敏感。干涉仪测向是当代比较好的测向体制,由于研制技术较复杂、难度较大,因此造价较高。干涉仪测向对接收信号的幅度不敏感,测向天线在空间的分布和天线的架设间距,比幅度比较式测向灵活,但又必须遵循某种规则。例如:可以是三角形,也可以是五边形,还可以是L形等。
四、多普勒测向体制
多普勒测向体制的测向原理:依据电波在传播中,遇到与它相对运动的测向天线时,被接收的电波信