微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络业界新闻 > 40G光通信技术与下一代干线光纤发展

40G光通信技术与下一代干线光纤发展

时间:06-01 来源:中国联通网站 点击:

,这样组网效率较高。目前中国电信已经开始在路由器上装备10G接口,在上海到杭州的Cisco路由器上已经采用了10G接口,不久别的地方也会慢慢跟上来。可能用不了几年,大多数骨干路由器的端口都是10G了,在这样的前提下就会迫使传输设备走向40G。

40G传输的关键技术

一,色度色散补偿和极化模PMD补偿技术。从理论上看,色度色散代价和极化模色散代价都随比特率的平方关系增长,因此40G的色散和PMD容限比10G降低了16倍,做起来很困难。 第二,光信噪比的要求较难满足。因为整体上说,它比10G要求提高了6dB,差不多要求32dB的光信噪比。这么高的光信噪比如果没有喇曼放大器,则是很难做到的。

第三,调制格式的选择。40G调制是一个很大的难题,有那么多选择,如NRZ码、差分相移键控RZ码(RZ-DPSK)调制方式、光孤子(Soliton)调制方式、伪线性RZ调制方式、啁啾的RZ(CRZ)、全谱RZ(FSRZ)、双二进制,究竟哪一种好呢?目前还没有结论。看来,短距离传输采用传统的NRZ,而长距离传输DPSK最有希望。这种调制方式的频谱宽度介于NRZ和RZ之间,比普通RZ码的频谱效率高,可以改进色散容限、非线性容限和PMD容限,传输距离比普通RZ码长。这种调制方式的光信噪比可以比NRZ改进约3dB,有些情况下可能高达6dB,是一种能有效扩展传输距离和适合40Gb/s速率的调制新技术。

第四,超级FEC。其实这是一个非常古老的技术。1984年,笔者在加拿大学习的时候,笔者的一个同学所做的论文就是FEC。从1984年到现在,已经过了18年了,它才开始形成大规模的应用。这个技术的发展是很有意思的,在当时的条件下,电信采用的是多模系统,但后来转成单模,因而就不需要FEC了。但是随着光速率达到40G,提高光信噪比的难度越来越大,成本和代价也越来越高,FEC就成为一个非常关键的实用技术。特别是对于40Gb/s速率,采用带外FEC已经成为关键的使能技术之一,不仅可以使传输距离达到实用化要求,而且在一些短距离传输系统上,可以避免实施昂贵复杂的有源PMD补偿。

第五,封装技术。在40G速率下封装技术也成为一个难点。光纤耦合容差仅0.2mm,所以在范围很宽的温度下能够继续维持稳定工作并不是一件简单的事。

第六,交换机和路由器的接口难度更大,需要非常复杂的处理能力,包括在40Gb/s速率下实现包基础的业务量整形、过滤和优先。它涉及很多元件,包括成帧器、网络处理器、流量工程实现芯片和高速I/O芯片等。预计其商用化时间比传输系统还晚一年。

40G传输网络的材料

40G的材料也是一个问题。过去我们习惯用硅锗和镓砷,到了40G时代可能这两种材料的性能已经不能满足要求了,在很多场合下可能需要采用InP(铟磷)材料了。InP属于半导体Ⅲ-Ⅴ族成员,这种材料比硅锗的电压低,比镓砷的功耗低,尺寸非常小,可以小于1mm2,电光效应比其他材料都强,而且可以用来构成各种有源和无源的集成器件,还可以作为半导体应用在超高速电子电路,包括40GB/s速率的驱动电路等上。在这样的超高速度下其性能优于硅锗和镓砷材料。看来InP材料将是40G的首选材料。

当然它的缺点是制作比较困难,不像硅锗和镓砷材料那样成熟,特别是由于芯片尺寸太小,使得与光纤的耦合变得困难,而且插损大。为了克服这一困难,可以采用锥形结构作耦合来实现InP芯片模斑尺寸与光纤端面的匹配。

总之,由于上述种种技术难点以及电信市场的低迷,40G系统的规模商用化时间还需要两年左右的时间,但其终将到来却是不以人的意志为转移的趋势。

下一代干线光纤的闪光点

光纤作为传输媒质,为光传输提供了巨大而廉价的可用带宽,在光传送网的发展中起着重要作用。特别是光缆的寿命高达20年,一次敷设后就很难再动,因此光纤参数的设计必须要有前瞻性,充分考虑设备和系统技术的发展趋势。下一代电信网需要支持更大容量、更长距离和更宽频谱范围的传输,因而开发敷设下一代光纤已成为历史的必然。

1993至1995年分别出现了以真波光纤和leaf光纤为代表的G.655光纤,并获得了大规模网络应用。包括笔者在内的多数人在一段时间内认为似乎光纤的研究已经到头了,现在看起来并不是这样。随着速率提高到40GB/s以及超长传输距离的实施,特别是复用波长数的继续增加,传统G.655光纤的弱点已经开始显露。例如低色散斜率光纤的零色散点仍然太高,接近S波段的低端,不利于开放S波段;而大有效面积光纤的高色散斜率和相对色散斜率、高零色散点和过大的有效面积对超高速超大容量系统的进一步发展更加不利。因此为了适应下一代光网络发展的需要,光纤参数的继续优化十分必要。目前在干

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top