微波EDA网,见证研发工程师的成长!
首页 > 通信和网络 > 通信网络业界新闻 > 韦乐平:宽带光纤接入网的发展与技术选择

韦乐平:宽带光纤接入网的发展与技术选择

时间:01-03 来源:eNet论坛 点击:

技术角度来分析几种主要宽带光纤接入技术的特征、问题和发展趋势。

  三、点到点有源光纤接入网

  1.宽带数字环路载波系统

  光纤接入网可以粗分为有源和无源两类,所谓的有源光接入网以前主要指第二代数字环路载波(DLC)系统,即综合的数字环路载波(IDLC)系统。随着宽带的发展,DLC也在进一步改进以支持DSL等宽带接入业务,构筑统一的宽窄带综合接入平台,支持向光纤到路边(FTTC)/FTTH的演进,国际上(例如heavy Reading)将其看作第三代DLC系统或宽带数字环路载波(B-DLC)系统。其中又分为两种:一种是在原有IDLC的基础上加宽带背板总线,支持独立DSL接入;另一种是新设计的系统,所有用户接口都是普通老式电话业务(POTS)加DSL,而成本几乎没有明显变化,设备往往还集成了VoIP媒体网关,具有h.248控制协议和信令,可以由软交换直接控制,适合网络在从传统电话网端局向软交换统一控制的宽带网过渡时期应用。

  传统DLC的缺陷是由于低用户密度区数字用户线接入复用设备(DSLAM)的敷设缺位或DSL的传输距离和速率限制而只能支持大约50%的用户。而B-DLC可以增加DSL的可用性,在所有有业务需求的地区都可以按需提供DSL业务。B-DLC也是推动接入网灵活点(交接箱处)融合的理想平台,可以按需以用户线为基础逐步实现向软交换的平滑过渡。这种技术在较低DSL密度下是比较经济的解决方案,转折点大约为25%左右,对于大规模高密度DSL敷设,则DSLAM是更理想的解决方案。然而,B-DLC技术作为有源设备仍然无法完全摆脱电磁干扰和雷电影响以及有源设备固有的维护问题,尽管在近中期会有发展,但不是接入网的长远解决方案。

  2.点到点同步数字系列/多业务传送平台系统

  在接入网中应用点到点同步数字系列(SDH) 的主要优势在于可以提供理想的网络性能和业务可靠性。SDH的最新发展趋势是支持以太网等业务接口的映射,于是SDH逐渐发展成为多业务传送平台(MSTP)。基本思路是将多种不同业务直接或经过处理后再通过虚电路(VC)级联等方式映射进不同的SDH时隙, 而将SDH设备与二层乃至三层分组设备在物理上集成为一个实体,构成业务层和传送层一体化的SDH多业务节点,定位于网络的边缘。具体实施时相当于将SDH复用器、数字交叉连接器(DXC)、WDM终端、二层交换机乃至IP边缘路由器等多个独立的设备集成为一个MSTP网络设备,统一控制和管理。当然,这种融合不是一步到位的,随着业务的发展和技术的进步,近期可以首先实现物理融合,中长期再走向完全的功能融合,成为名副其实的融合节点。特别是集成了VC级联、通用成帧协议(GFP)、动态链路容量调整机制(LCAS)三种标准功能的新一代MSTP,不仅能大大增强自身灵活有效支持数据业务的能力,而且可以将核心智能光网络的智能特征扩展到网络边缘,增强整个网络的智能范围和效率。

  最新的发展则是将具有很好汇聚特性和优化数据接入能力的弹性分组环(RPR)功能集成进来,最适合于城域网的接入层应用,特别是以太网业务带宽需求占绝对优势的场合。然而,由于RPR没有跨环标准,独立组大网的能力较弱,若利用与MPLS相结合的方法可以使跨环业务流配置成同一个MPLS的标记交换通道,从而实现多个RPR环业务的互通和端到端业务调度。利用MPLS还能提供基于全网的流量工程,实现空间重用和带宽保证,提供有QoS保证的端到端的业务连接,加强了支持数据灵活联网的能力,应用范围则可以扩展到网状网等复杂的拓扑结构。鉴于这种方案基于同步工作,抖动要求严格,设备成本较高,而且灵活生成业务的能力不足,因此主要适用于局间或汇接点(POP)间,以及大型企事业用户的点到点通信。

  3.点到点有源以太网系统

  传统以太网技术不属于接入网范畴,而属于用户驻地网(CPN)领域。然而其应用领域却正在向包括接入网在内的其他公用网领域扩展。历史上,对于企事业用户应用环境,以太网技术一直是最流行的方法,目前已成为仅次于供电插口的第二大住宅和办公室公用设施接口。采用以太网作为企事业用户接入手段的主要原因是:已有巨大的网络基础和长期的经验知识,目前所有流行的操作系统和应用都与以太网兼容,性能价格比好,可扩展性强,容易安装开通以及可靠性高等。

对于公用网住宅用户应用环境,点到点有源以太网系统采用有源业务集中点来替代无源点到多点系统的无源器件,使传输距离可以扩展到160km。主要优点是:专用接入,带宽有保证,每用户可以独享100 Mbit/s的接入速率,局端设备简单,传输距离长,成本随用户数的实际增长而线性增加,投资风险低,在

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top