用于便携式设备的低功耗MCU系统设计方法及应用
*尽量减少CPU的运算量。减少CPU的运算工作量,可以有效地降低CPU的功耗。减少CPU运算的工作可以从很多方面入手:其一,用查表的方法替代实时的计算。其二,不可避免的实时计算,算到精度够了就结束,避免"过度"的计算。其三,尽量使用短的数据类型,例如,尽量使用字符型的8位数据替代16位的整型数据,尽量使用分数运算而避免浮点数运算等。其四,让I/O模块间歇运行,即不用的I/O模块或间歇使用的UO模块要及时关掉,以节省电能;不用的I/O引脚要设置成输出或设置成输入,用上拉电阻拉高。
3、单片机(MCU)在低功耗方面的优势
当今面临的问题是,使用者或市场均对单片机(MCU)低功耗有严酷的要求,那么将如何来设计MCU来满足市场?应该说,当今众多厂商的MCU均有在低功耗面的优势,值此仅以Silabs MCU为例作分析说明MCU在低功耗方面的优势。
*供电电压低。MCU供电电压为2.0~5.25V。供电电压低可以有效降低整个单片机系统的功耗。
*有多种低功耗模式。MCU的低功耗模式有Idle模式和Stop模式。为了更进一步地降低MCU的功耗,提高市场竞争力,从2006年下半年己推出的MCU都将带有Suspend模式。这种模式下的功耗为纳安级。
*有多种时钟方案供选择。MCU内置振荡器有高速震荡模式和低速震荡模式可供选择。每种模式下的频率又有多种选择。而且还可以外接振荡器。更重要的是,在MCU运行中,这些时钟模式可以实时切换。这很方便客户进行低功耗控制。例如:在处理数据时,系统运行在高速状态;空闲时运行在低速状态。
*高速实时的中断响应。MCU响应中断的时间非常快,一般只需要5个系统时钟周期。中断响应速度快,CPU花费在等待方面的时间少,这可以节省不少的等待功耗。
*灵活的I/O设置。MCU的I/0口资源丰富,配置灵活。有三种配置方式:漏极开路、推拉输出和弱上拉方式。用户可以根据实际需要通过相关寄存器的设置来禁止或使能这些方式。其中将端口配置成漏极开路方式是最省电的方式。另外,MCU片上没有用到的其他外设可以通过软件来关闭。总之,根据项目的要求,灵活运用MCU的各种低功耗特性,通过软件的控制,就可以很好地实现低功耗的要求。
使用每MIPS功耗来衡量MCU的低功耗性能是相对比较准确。比如执行一个需要10K条指令的任务,甲MCU的工作电流为3mA,速度为10MIPS,则甲MCU需要工作lmS完成该任务,消耗3mA*1ms*Vcc,然后甲MCU就可以进入低功耗模式了。而乙MCU的工作电流为1mA,速度为2MIPS,则乙MCU需要工作5mS完成,这样乙MCU完成该任务的消耗为1mA*5mS*Vcc。电流大但是速度快的MCU可能更省电!
4、MCU在低功耗方面的设计方法怎样?
一般来说,MCU的运行的速度越高,供电电压越高,功耗也就越高。要降低单片机系统的功耗,就要降低单片机系统的供电电压,降低MCU运行的频率。
举例分析说明:客户要做一个无线计时类产品,使用电池做供电电源,要求平均功耗不超过200uA。该产品是间歇工作的:当收到数据时激活,快速处理数据;当空闲时进入休眠状态,来降低功耗,己有不少制造商可达150μA以满兰客户要求。例如,C8051F333型MCU。
4.1 看一下C8051F333的电气参数就知道了
*正常模式,CPU从Flash取指令。
IDD(当Vdd=3.6v F="25MHz时")为10.7mA-11.7mA;IDD (当Vdd=3.0v F="25MHz时")为7.mA-8.3mA;IDD (当Vdd=3.6v F="1MHz时")为0.38mA;IDD (当Vdd=3.0v F="80Hz时")为31μA。
*Idel模式,CPU停止工作。
IDD(当Vdd=3.6v F="25MHz时")为4.mA-5.2mA;IDD (当Vdd=3.0v F="25MHz时")为3.8mA-4.1mA;IDD (当Vdd=3.6v F="1MHZ时")为0.2mA;IDD (当Vdd=3.0v F="80Hz时")为16μA。
光看上面两个模式的数据,肯定不行。因为要满足系统的运行速度,又要满足低功耗≥1MHZ的频率,则功耗都要超过客户的要求。而正确答案是:在不降低MCU运行速度(MCU处理数据时的运行频率是24.5MHZ)的情况下,客户使用C8051F333成功实现了低功耗的要求:比150μA还低, 真可谓鱼和熊掌兼得。 ;
4.2 它是怎样实现的?
见图1所示。使用了内外两种晶振。工作时使用内部高速晶振24.5MH2,空闲时切换到外部低速晶振32.768KH2,并且进入Idle模式。并且把没有用到的外设全部关闭,就这么简单。由此看出,功耗是一个系统的问题,单片机系统的功耗是由MCU和其外围电路的功耗共同决定的,低功耗是无数个细节省出来的。
5、小尺寸单片机在便携式设备中的应用
面对如今便携式设备提出的挑战单片机,如何应对挑战?而用小尺寸单片机是在一种理想的举措应对,值此以C8051F小尺寸单片机为例,分析其在便携式设备中的应用。为此先介
- 便携式设备的EMC和ESD设计(09-08)
- 在选用FPGA进行设计时如何降低功耗 (03-09)
- 基于自适应DVFS的SoC低功耗技术研究(06-19)
- 嵌入式行业盛行低功耗和可配置(05-15)
- 基于AT91SAM7L的极低功耗系统设计(10-01)
- 用Blackfin处理器为您的应用置入低功耗引擎(01-11)