数字存储示波器简介
号,例如来自其它线路的干扰或吸收大功率的瞬变信号等。可以把示波器设置为当被测脉冲的宽度小于允许的最高频率信号之周期的一半时触发。因为我们可以认为,在正常工作的情况下,这样的窄脉冲是不可能发生的。
毛刺触发的另一个应用场合是逻辑硬件,这时硬件电路的逻辑状态都是和系统时钟同步变化的。结果,这种硬件电路中的脉冲宽度都应为系统时钟周期的整倍数。在这种系统中,故障的发生常常和脉冲宽度异常有关。为了探测故障,我们现在可以把示波器的触发条件设置为在脉冲宽度小于一个时钟周期时触发。
4、时间限定触发
这种触发方式使得示波器在满足一定的时间长度要求的条件下,可以按上述任何一种方式触发。这种时间长度要求可以是要求某一最小时间长度(如果时间长于某值则为有效),要求某一最大时间长度或者要求某一个从最小值到最大值的时间范围。时间限定触发对于按照系统不能满足正常工作条件来触发以对系统进行检测时是非常有用的。还可以用这种触发方式探测连续工作信号发生的中断现象。
5、时间延迟
这种触发方式可以使示波器按照多个信号的情况来触发,而其中的一个信号,用来延迟采集的起始点。触发周期是由一个主信号,通常为多个信号通到之一启动的。接收到主触发信号以后,示波器就开始检查第二个信号(这也可能还是那个主触发信号,但取不同的电平),并对这个信号上的触发事件进行计数。当达到预先规定的触发事件数时,示波器就开始采集波形。典型应用实例为串行数据线、控制系统及机械环境等。
6、N次周期
这种功能可以用来从输入信号中选出每个第N次出现的波形,然后将这种选出的信号加到正常触发系统来使示波器触发。当一个信号受到它的谐波的影响而失真,也就是说这个信号是周期性的但其各个周期并不完全相同。这种情况下, N次周期触发方式特别有用。例如某一系统按一固定频率运行,但是每过12个脉冲,脉冲的宽度就变得宽一些。这时可以选择“N周器=12”,这样示波器就只对这些变宽的脉冲作出响应,引起触发。
七、波形存储
被测信号的波形存入存储器以后,可以将其复制到所谓的后备存储器或寄存器中,供以后进行分析或作参考及比较的目的使用。DSO通常装有多个这种存储器。后备存储器可以按扫迹存储器的方式设置,这时示波器多通道采集的每一条扫迹将分别存储。也可将后备存储器设置为记录存储器,这时示波器将多通道采集的所有数据同时存储下来。第二种方法的好处是同时保存了所有有关的时间信息。
示波器配备大量的后备存储器对于在现场工作的工程师是很方便的。这时,工程师可以把现场测量期间所有有关的波形都存储下来以便以后生成硬考贝、或将这些波形传往计算机再作进一步的分析。
八、显示算法、内插和点连接及窗口模式
我们在DSO屏幕上看到的波形是由存储器中的采样点重建出来的信号波形。这时示波器在屏幕上显示出这些采样点,并在这些采样点之间画出连线。这种波形显示的工作可以按几种方法来作。最简单的方法是在各个采样点之间用直线连接。这种方法称为线性内插。只要各采样点之间靠得很近,例如每格50个采样点,用这种方法就能够获得足够的重建波形。如果在信号跳变沿前后都采集了采样点,那么用这种方法就可以观察信号的沿。如果将显示的波形在水平方向放大,使得采集的采样点之间的距离变大,那么示波器屏幕上信号波形的亮度就会降低。所以示波器是通过计算出内插的或显示的采样值来保持屏幕上显示的采样点数足够高。当屏幕上的波形在水平方向放大得很大时,在屏幕上显示出一条通过各采样点的连续的曲线就比在采样点之间用直线连接要好得多。为此可以使用正弦内插法。采用这种方法时,在屏幕上将各个采集的采样点用幅度和频率俱为可变的最佳正弦拟合曲线连接起来。采用了内插的方法以后,即使当屏幕上每格的采样点数较少时也能得到和模拟示波器显示波形类似的自然平滑的重建波形。
为了观察真正的采样点,示波器通常设有点显示方式。在此方式下,不使用任何内插法。选择这种方式以后,我们在屏幕上只能看到用离散亮点表示的采样点,而在这些点之间没有任何连线。
当我们进行信号比较时,例如将一新采集的波形和以前存储的信号波形比较时,把这两个波形扫迹显示在示波器屏幕的不同区域会是很有用处的。为此示波器又设有窗口模式。这个模式将示波器屏幕分成两个或多个区域以显示不同的扫迹。由于减小了垂直幅度,因此在窗口模式下,DSO还可以使用其模拟前端的全部动态范围。这样,在减少了显示幅度的情况下,还能获得优化的测量准确度。
数字示波器 相关文章:
- 数字示波器与模拟示波器的对比(10-06)
- 模拟示波器和数字存储示波器的选择和使用(10-06)
- 数字示波器原理(12-10)
- 实例RIGOL开关电源测试(08-01)
- 数字示波器自动检定系统(03-03)
- 基于DS1000数字示波器的实验室应用(11-07)