[image: image1.wmf]Reference Objects in LabVIEW™

Damien Gray

7 August 2007

Introduction

What is a reference object?  A reference object is a piece of data which exists in only one place and is accessed by reference.  This one place can be in memory, on disk, or on a remote server.  The reference can be any of several mechanisms supported by LabVIEW.

This paper will survey several methods of implementing reference objects in LabVIEW.  These reference objects will be compared to an “ideal” reference object.  Finally, benchmarks will be presented of the reference objects.

This paper only covers reference object methods available from National Instruments.  Commercial and open source solutions are not included.

The Ideal Reference Object

The ideal reference object has the following characteristics:

· Read anywhere by reference

· Thread-safe

· Encapsulated data

· No copies on read/write

· Uses and data type

The first item may seem obvious, but LabVIEW is a data flow language.  Wires contain the data and data is passed by value.  In a reference object, the data is contained in a persistent object that is referenced by a value on a wire or by calling a VI.  The actual data is not passed around.

Thread safety is very important in LabVIEW.  LabVIEW makes it trivial to create multi-threaded applications.  With multi-threaded applications comes the risk of race conditions.  Data flow largely removes this risk, but using a reference object brings it back.  A good reference object should automatically serialize access to its data structure to help prevent race conditions from occurring.

Data encapsulation is a “sealing off” of the data so it is only accessible through a defined interface.  Often, reference objects are a collection of data with predefined relationships.  Open access to the data can easily result in invalid configurations.  Encapsulation of the data prevents this.

Data copies are common in LabVIEW due to its data flow paradigm.  However, they can cause inefficiencies and slowdowns in code execution.  A good reference object does not produce extra copies on read or write.  Note that reducing data copies is highly dependent on the way a reference object is used, as well as the method used to produce the object.

A reference object should be usable with any data type.  Arrays and LabVIEW Objects can cause problems with some methods.

All uses of reference objects do not need all these characteristics.  For example, a static look-up table does not need thread safety or encapsulation.  If properly coded, it is initialized once before any reads and then only read.  The characteristic charts at the end of this paper make selecting a reference object for a particular application easier.  Choose the object which is easiest to create and matches the characteristics you need.  However, be aware of future modifications of the system.  It can be difficult to change from one reference object model to another.

LabVIEW Objects and Reference Objects

LabVIEW Objects are a powerful, object-oriented tool for LabVIEW development.  They are not reference objects, since they are wires and are passed by value.  Reference objects can be created from them using the methods in this paper.  This can produce some very interesting and powerful objects.  However, this topic is beyond the scope of this paper and  will not be explored further.  If you are interested, the National Instruments and LAVA discussion forums frequently visit this topic.

Reference Object Methods

The following survey of reference objects includes only those easily created from LabVIEW or available by download from the National Instruments website.  They are ranked using the following criteria.

· Access speed

· Memory usage

· Encapsulation

· Thread safety / safe serialization

· Data types supported

· Miscellaneous interesting facts

Globals

[image: image2.png]


Globals are an obvious and easy method to produce a reference object.  Simply create the global and drop it any where you need to read or write the data.  Globals are created from the File»New menu or from the context menu of the project.  They are very fast.  However, encapsulation is difficult and globals always make a data copy on read.  They also tend to slow down under very heavy use, making other methods better.  They are a good choice for a static look-up table, but cannot be recommended for anything else.

Single-Processor Shared Variable

[image: image3.png]. @ SingleProcesssharedvariable |}



The shared variable was introduced in LabVIEW 8.0.  It is simple to create from the project context menu and has two forms – the single-process and network shared variables.  The single-process shared variable is build on the same technology as the global, but with additional overhead to allow it to easily be converted to the network shared variable.  As such, it has all the pluses and minuses of the global, but is a bit slower.  It is easily converted to a network shared variable.  The only reason to use it is a static look-up table that you may need to publish to a network in the future.

Network Shared Variable

[image: image4.png]R ictworksharedvariable )




The network shared variable was designed to make it easy to communicate across context boundaries.  For example, to communicate from a LabVIEW RT process to a desktop process.  Since it communicates over a network, it is very slow and timing and synchronization cannot be guaranteed.  In addition, each reader of the network shared variable maintains a copy of the data.  The data cannot be easily encapsulated.

Datasocket

[image: image5.png]Clust (strict) 7]

AtachDatasacket

A

.
f—Erabed




Datasocket is an older technology that has been replaced by the network shared variable.  It has the same issues as the network shared variable.  However, it is more efficient and gives the user a bit more control over the network settings.  It requires a running server to function.  Datasockets do not handle arrays well.

The datasocket server is launched from the operating system start menu.  When running, data can be created on the server, published to the server and read from the server.  Create data on the server using the control method AttachDataSocket.  Note that the VI containing the control which is to be attached must be idle when the method is run.  After the control is attached to the datasocket server, reads and writes can be performed with the Datasocket Read and Datasocket Write primitives.

Datasockets should only be used when network reference objects are needed.  Be careful of data copies and timing issues.  Do not use for arrays.

Configuration VIs

Configuration VIs were designed to allow easy reading/writing of Windows style INI files.  They cache everything in memory as text strings.  This makes them somewhat slower than other methods and causes major problems with array storage.  The conversion, by necessity, creates a copy of the data.  In later versions of LabVIEW, an INI file must be specified before the VIs will work.  They automatically encapsulate data, but do not serialize access to it.  There are much better reference object methods, so there is no reason to use configuration VIs for reference objects.

Control Reference

A VI reference to a front panel control is an obvious reference object method.  The data is nicely encapsulated and can be serialized using semaphores in the accessor VIs.  However, the panel must always remain in memory.  Reads and writes go through the UI thread, so are slow.  Writes update the panel state as well as the control value, so are fairly heavy-weight operations.  In addition, reads make copies and writes may make copies.  This solution is not recommended.

GOOP 1.0

GOOP 1.0 was an early attempt at object-oriented programming released as a download on ni.com.  It is still available.  It has a relatively nice object maintenance wizard, encapsulation and serialization.  Unfortunately, the implementation forces all data access through the UI thread, slowing performance considerably.  Modern commercial versions of GOOP do not have this issue.  There are better options available.  If you like the maintenance wizard, consider one of the commercial offerings.

LabVIEW 2.0 Global

[image: image6.png]B00L i

errorin (no err




An uninitialized shift register in a single pass loop can be used to store data as long as the VI is in memory.  The shift register keeps its previous state every time it is called.  There are two main architectures which use this method – the action engine and the repository.

The action engine is a single, non-reentrant VI which contains both data and methods.  When the VI is called, the method is selected using an input – usually an enum or ring control.  Inside the single run loop, a case structure selects the proper function.  This method gives automatic serialization and encapsulation.  The LabVIEW execution system ensures that a single, non-reentrant VI cannot be simultaneously called from two places at once.  The data can only be accessed using the VI.

If you want multiple instances of an action engine, make the VI reentrant.  Open a reference to the VI using the Open VI server method.  Use the reference to run the VI.  If you want another instance, open another copy.  Since the VI is reentrant, another instance will automatically be created.  Make sure that the VI which opens the VI references stays in memory or LabVIEW may clean up the VI references, making them invalid.

The repository is a simple action engine whose only functions are reading, writing, and locking the data.  This encapsulates the data.  Functions are implemented as separate VIs.  Serialization is accomplished using semaphores.  This method is more easily extensible and maintainable than the action engine, but suffers from poorer performance.  LabVIEW semaphores run in the UI thread, so data access often involves a thread switch.  In addition, care must be exercised to avoid data copies in the function VIs.

Action engines are a good choice for reference objects with a few functions.  The repository method works well, but there is a faster method which accomplishes the same thing.

Single-Element Queue

[image: image7.png]


A queue with a fixed size of one element can be used as a reference object.  The reference is the queue reference.  The object is the queue data.  The queue nicely encapsulates the data.  The properties of queues ensure serialization in the following manner.  All access to the data starts with a dequeue.  By dequeuing the data, the queue is now empty.  A caller elsewhere will wait for the data to be enqueued before dequeuing it.  Data operations end with an enqueue.  In the case of a read, the data is not changed.  As a bonus, dequeuing a single-element queue does not produce a data copy, making this a very fast operation.

One issue with this method is that some versions of LabVIEW do not handle nested typedefs well.  Usually, the queue reference and the data inside it are strict typedefs to allow for easy development.  To change the data typedef, close all other items first.  When you reload, the code will be automatically updated.

This method is a good general-purpose choice with relatively easy maintenance.

Speed Benchmarks

Two benchmarks were run to determine the relative speed of the different methods.  In the first, a data set including one double was read and written 10,000 times.  In the second, the time to read a 1MByte array was determined.  The benchmark machine had the following specifications:

Dell Precision 380 Workstation
Processor: 3.2GHz Intel Pentium 4 with hyperthreading enabled
Operating System: Windows® XP with service pack 2
RAM: 1GByte

10,000 DBL read/write cycles

Reference Object
LV7.1 speed
LV8.2 speed

Global
16.0 ms
15.9 ms

Single Processor Shared Variable
not available
22.9 ms

Network Shared Variable
not available
25180.0 ms

Datasocket 
8904.0 ms
10625.0 ms

Configuration VI
643.6 ms
1785.1 ms

Control Reference
1636.0 ms
2362.1 ms

GOOP 1.0
2003.0 ms
3447.1 ms

LV2 Global - Repository
338.7 ms
323.5 ms

LV2 Global – Action Engine
17.0 ms
16.4 ms

Single Element Queue
53.1 ms
51.2 ms

Read of 1MB Buffer

Reference Object
LV7.1 speed
LV8.2 speed

Global

0.000261 s

0.000298 s

Single Processor Shared Variable
not available

0.000305 s

Network Shared Variable
not available

6.01 s

Datasocket 

10.1 s

8.16 s

Configuration VI

1.78 s

180.0 s

Control Reference

0.000507 s

0.0099 s

GOOP 1.0

0.00285 s

0.00329 s

LV2 Global - Repository

0.00172 s

0.00197 s

LV2 Global – Action Engine

0.00162 s

0.00205 s

Single Element Queue

0.000272 s

0.000333 s

Conclusions

The action engine or single-element queue are the reference objects of choice.  Which you choose depends on your design preferences and what size your data objects will be.  If you prefer single VIs, use the action engine.  If you prefer a more object-oriented approach or are handling large data sets, use the single-element queue.

Networked reference objects can be generated using either the network shared variable or datasockets.  Both suffer from timing, speed, and copy issues, so care must be taken in their use.

Static look-up tables can be easily created using globals.  Use of globals for a general-purpose reference object will often result in race conditions, so use globals only for static look-up tables.

Reference Objects in LabVIEW

Page 3 of 6

