Appendix B

CCD Technology

CCD Operation

- As we saw in the Sensors article, the CCD operated by "pouring" charge from one potential well to the next
 - » using appropriately pulsed electrodes
- That article also discussed the ways in which CCD arrays can be scanned
- However, it did not really address the implications of the technique
 - » what we will find is that the CCD needs a number of special features in order to work effectively
 - » this is reasonable; CMOS designs are optimised for low power consumption, speed and flexibility, while CCDs are optimised for CCD imaging

• The advantages of CCDs include

- » large fill factor (no "opaque" transistors)
- » high sensitivity
- » low noise levels
- » large-area formats (e.g. DALSA 4096x4096)

Charge Transfer Efficiency

- The essential part of the CCD operation is that <u>all the charge</u> must be transferred from gate to gate
 - » well, 99.999% anyway!
 - » the completeness of this charge transfer is dictated by the number of steps required to get the charge out of the array ...

- We define the <u>charge transfer efficiency</u> () to be the fraction of the well charge that is transferred at each step
 - » in the worst case, the charge from the shaded pixel above is transferred (n + m) times

Why is 1?

• There are two main causes for loss of charge in the transfer

- » lack of time to complete the transfer
- » charge trapping
- Of course, this means that the next charge packet may gain charge left behind by the previous one
- Charge transfer occurs by a combination of
 - » carrier diffusion
 - » carrier drift

- Charge transfer by carrier diffusion is maximised by
 - » short gates
 - » a high diffusion coefficient
 - for electrons in p-type, the diffusion coefficient is about 3x that for holes in n-type

Overlapping Gates

- The requirement for gates that are closer together (to assist fringing fields) is tough to meet
 - » the spacing must be sub-micron
 - » but CCD processes usually have feature sizes of 2µm or so (because of large area, deep diffusions etc)
- Therefore gates are made so that they are overlapping

- Such a process requires the deposition of at least two separate layers of poly-Si gates
 - » unlike a conventional digital CMOS process which uses only one
 - » and appropriate isolation processing

Charge Trapping

- Charge trapping causes electrons to get "stuck" in the well
 - » thereby removing them from one charge packet
 - » and releasing them at into another packet at a later time
 - » they cause both transfer inefficiency and image lag
- Trapping occurs because there are defects in the c-Si at the interface with the SiO₂
 - » energy levels are created within the Si bandgap
 - » electrons "fall" into these traps
 - » the only way out is back up again (may be a large energy difference)

- The time constant for trapping << time constant for release
 - » t_{trap} 10⁻⁹s (depends on electron concentration
 - » $t_{release}$ 10⁻¹¹ 10⁻³s (depends on trap depth)

Reducing Charge Trapping

- One way to reduce the effects of charge trapping is to keep the traps permanently filled
 - » so-called "fat zero"
 - » giving $Q_{total} = Q_{fz} + Q_{signal}$
 - » Q_{fz} 20% of full-well capacity
- This works well, but has the disadvantage of reducing the dynamic range
 - » because some of the well is always filled
- Modern processing technology is quite good at minimising surface states
 - » but there are always some left
- So the best way of reducing their effect is to
 - » remove the interface
 - » or at least move the charge storage away from the interface
- The result is known as a buried channel CCD

Buried Channels

• The surface states affect

- » charge transfer efficiency
- » dark current (more easily generated when there are mid-gap states)
- » noise
- So buried channel devices use extra implants to move the "active" area of the CCD away from the Si-SiO₂ interface

- The doping is such that the n-type is fully depleted
 - » the exposed N_d⁺ ions enhance the positive potential from the gate
 - » and creates a potential minimum that is away from the semiconductor surface
 - » typically the n-type is 0.3 μ m thick & N_d 3.10¹⁶ cm⁻³

The potentials for empty and partially full wells

- As the well fills, the channel moves closer to the surface
 - » and eventually the charge packet interacts with the interface, as before

- In addition to the reduction of charge trapping, BCCDs have another advantage
 - » fields increase more with depth below the surface
- Hence, the charge transfer is both more complete and faster
 - » provided you have enough voltage on the gates to achieve the greater depletion depth
- However, the main drawback of the buried channel approach is that the total charge-handling capability is reduced
 - » because the "capacitor" on which the charge is stored is smaller, since the "plates" are further apart
 - » this difference may be about a factor of 3
- While we have now covered some of the basic background of the CCD, two more additions are needed
 - » something to stop the charge spilling sideways out of the CCD

» something to handle charge when the well overflows

Channel Definition

- There are two common methods for channel definition
- Channel-stop implants
 - » the threshold voltage for channel formation is increased beyond the gate voltage by the p+ implants
 - » so the channel only forms in the region in-between

- Stepped oxide isolation
 - » the gates are moved further away from the substrate, thereby reducing the field underneath
 - » called LOCOS (LOCal Oxidation of Silicon)

Vertical Anti-Blooming

- Remember that one of the image artifacts blooming – was caused by charge from one brightly illuminated pixel spilling into neighbouring pixels?
- Vertical antiblooming is a compact method by which to drain away excess photo-generated carriers
 - » in cross section, the device has the p⁺ channel stops
 - » and the n⁻ buried channel layer
 - » a non-uniform p-implant, leading to a "weak" point at which the spill-over will occur

Charge Readout

- The clever part about using charge as the signal (rather than voltage or current) is that we can convert charge to voltage with a high degree of sensitivity
 - by using a capacitor; V = Q/C**》**
- So if we make C small enough, we get a large voltage for a small charge
 - » typically 10µV per electron

- The corresponding capacitance is about 16fF
 - so the diffusion must be small and lightly doped **》**
- So now the tactic of waiting longer to integrate more charge on the pixel makes sense
 - we pass on discretised packets of charge, rather than **》** a continuous current
 - because the conversion method is more sensitive **》**

Fabrication

- Having seen how a CCD works, we can now look at what fabrication processes must be optimised
- We will find that a good CCD demands a process that is substantially different from other fabrication technologies, notably CMOS
 - » and the trends of "mainstream" technologies are exactly to opposite to those required for CCDs
 - » indeed, some trends are also bad for CMOS imagers too – see later!
- The main issue is that CCDs are, by today's standards, macroscopic devices
 - » and need to be that way for effective imaging & charge transfer
- While CMOS technology, with its standard libraries and wide availability is getting ever more microscopic
 - » for higher speed
 - » and lower power consumption
- CCD fabrication is complex with typically 15 25 masks
 - » so we will only look at a the basic features

Requirements

- We can already summarise some of main conditions
- Double (or more) poly-Si process
 - » for overlapping gates
- Deep, complex implants which define
 - » buried channel and p-well (with VAB)
 - » channel stops
- Relatively high operating voltages
 - » to get a good potential well in the buried layer
 - » typically 10 20V
- The serial nature of the CCD means that, conventionally, all of the video data passes through a single output node
 - » this is good because it reduces errors due to component mismatch
 - » but the subsequent electronics has to able to cope with the video-rate data
 - » which is tough without speed-optimised devices
- To reduce this problem some CCDs are subdivided and have several outputs

p-Well

• The p-well is formed from implanted B ions

» ~100keV & ~10¹² cm⁻³

- Under the photo-sensitive elements, the location of the well "weak" point is defined by masking out the implant
 - » a thin SiO₂ layer is used to protect the surface from damage due to the implantation

- Implantation is followed by "drive in"
 - » the wafer is heated to ~1100°C for 10 hours
 - » the dopants diffuse downwards and laterally
 - » L_{lateral} 0.75L_{downwards}
 - » this fills in the gaps between the implants to give the "weak" point required for VAB
- The final depth of the p-well is ~2.5µm at the shallow point and 3.0µm elsewhere

Channel Stop Implant

- The p⁺ channel-stop regions are again formed using ion implantation
 - » B⁺ ions at 50keV and 2 x 10^{13} cm⁻³
- This implant is driven in during the high temperature cycle (>1000°C) used next to grow the gate oxide
 - » to a final depth of about 1µm
- A trade-off here is that driving the p⁺ implant deep enough also causes it to spread sideways
 - » taking up valuable space between the rows of pixels
- An important fact to note is that there are several high temperature process steps, each requiring temperatures in excess of 1000°C, e.g.
 - » p-well drive in
 - » channel drive-in
 - » gate oxide
 - » inter-poly oxides between gates
- So the final depth of the implants is a function of the cumulative effects of all these steps

R.I. Hornsey, University of Waterloo

Gate Oxide Thickness

- The oxide layer that isolates the gates from the channel is grown using the same high-temperature step that drives in the channel stop
- The original protective SiO₂ layer is removed and the wafer cleaned
 - » thermal oxide offers the best $Si SiO_2$ interface
- A typical gate oxide is 80nm thick
- Compared with values for modern CMOS processes (< 10nm), this is very thick
 - » and is needed because of the higher CCD operating voltages
 - » 10V as opposed to 3.3V (or less)
- Later fabrication stages include
 - » deposition and patterning of several poly-Si layers and inter-poly dielectrics
 - » (this gets tricky because of the surface topography)
 - » metal layers and contact vias
 - » n⁺-implants to make source/drain regions at the CCD input and output
 - » colour filters and/or microlenses