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CCD Operation

As we saw in the Sensors article, the CCD
operated by “pouring” charge from one
potential well to the next

» using appropriately pulsed electrodes

That article also discussed the ways in which
CCD arrays can be scanned

However, it did not really address the
implications of the technique

» what we will find is that the CCD needs a number of
special features in order to work effectively

» this is reasonable; CMOS designs are optimised for
low power consumption, speed and flexibility, while
CCDs are optimised for CCD imaging

The advantages of CCDs include

» large fill factor (no “opaque” transistors)

» high sensitivity

» low noise levels

» large-area formats (e.g. DALSA 4096x4096)
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Charge Transfer Efficiency

« The essential part of the CCD operation is that
all the charge must be transferred from gate to
gate

» well, 99.999% anyway!

» the completeness of this charge transfer is dictated by
the number of steps required to get the charge out of
the array ...
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« We define the charge transfer efficiency (h) to be

the fraction of the well charge that is transferred
at each step

» in the worst case, the charge from the shaded pixel
above is transferred (n + m) times
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Fraction collected

So the fraction of the original charge that

remains is given by

» h(n +m)

» the fraction of the original charge collected as a

function of CTE is
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CCDs are able to achieve the required charge

transfer efficiency

» but it needs specialised techniques

» and it makes the sensor susceptible to, for example,

radiation damage
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Why is h t 17

« There are two main causes for loss of charge in
the transfer

» lack of time to complete the transfer
» charge trapping

« Of course, this means that the next charge
packet may gain charge left behind by the
previous one

 Charge transfer occurs by a combination of

» carrier diffusion

» carrier drift
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« Charge transfer by carrier diffusion is
maximised by

» short gates
» a high diffusion coefficient

» for electrons in p-type, the diffusion coefficient is about
3x that for holes in n-type
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« The drift is assisted by careful design of the

transfer gates

» to achieve a fringing field so that carriers are swept

into the next well

» the fringing field is larger
and closer, shorter gates
| | | | | | |

for lower substrate doping
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« So thetime required to get 99.99% transfer
efficiency as a function of gate length, for 3
substrate doping levels (i.e. fringing fields), is
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Overlapping Gates

« Therequirement for gates that are closer
together (to assist fringing fields) is tough to
meet

» the spacing must be sub-micron

» but CCD processes usually have feature sizes of 2um

or so (because of large area, deep diffusions etc)

« Therefore gates are made so that they are
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e« Such aprocess requires the deposition of at
least two separate layers of poly-Si gates

» unlike a conventional digital CMOS process which
uses only one

» and appropriate isolation processing
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Charge Trapping

« Charge trapping causes electrons to get “stuck”
in the well
» thereby removing them from one charge packet

» and releasing them at into another packet at a later
time

» they cause both transfer inefficiency and image lag

« Trapping occurs because there are defects in
the c-Si at the interface with the SiO,
» energy levels are created within the Si bandgap
» electrons “fall” into these traps

» the only way out is back up again (may be a large
energy difference)
surface states
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« Thetime constant for trapping << time constant
for release

» tyap » 109 (depends on electron concentration

» toease » 1011 — 10-3s (depends on trap depth)

R.I. Hornsey, University of Waterloo



Reducing Charge Trapping

One way to reduce the effects of charge
trapping is to keep the traps permanently filled

» Sso-called “fat zero”
»  giving Qg = Qp, + Qsignal
» Qg » 20% of full-well capacity

This works well, but has the disadvantage of
reducing the dynamic range

» because some of the well is always filled

Modern processing technology is quite good at
minimising surface states

» but there are always some left
So the best way of reducing their effect is to

» remove the interface

» Or at least move the charge storage away from the
interface

The result is known as a buried channel CCD
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Buried Channels

e The surface states affect

» charge transfer efficiency

» dark current (more easily generated when there are
mid-gap states)

» noise

e« So buried channel devices use extra implants to
move the “active” area of the CCD away from
the Si-SiO, interface

n-type channel

p-type

« The doping is such that the n-type is fully
depleted

» the exposed N,*ions enhance the positive potential
from the gate

» and creates a potential minimum that is away from the
semiconductor surface

» typically the n-type is 0.3um thick & Ny » 3.1016 cm-3

R.I. Hornsey, University of Waterloo 10



[
« The potentials for empty and partially full wells
are as follows
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« As the well fills, the channel moves closer to the
surface

» and eventually the charge packet interacts with the
interface, as before
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[
 In addition to the reduction of charge trapping,
BCCDs have another advantage

» fields increase more with depth below the surface

 Hence, the charge transfer is both more
complete and faster

» provided you have enough voltage on the gates to
achieve the greater depletion depth

« However, the main drawback of the buried
channel approach is that the total charge-
handling capability is reduced

» because the “capacitor” on which the charge is stored
is smaller, since the “plates” are further apart

» this difference may be about a factor of 3

 While we have now covered some of the basic
background of the CCD, two more additions are
needed

» something to stop the charge spilling sideways out of
the CCD

channel definition

ST TITE

» something to handle charge when the well overflows

@
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Channel Definition

There are two common methods for channel
definition

Channel-stop implants

» the threshold voltage for channel formation is
increased beyond the gate voltage by the p+ implants

» S0 the channel only forms in the region in-between
+10V

7 e P implants

p_SiW

» the gates are moved further away from the substrate,
thereby reducing the field underneath

» called LOCOS (LOCal Oxidation of Silicon)

e

Stepped oxide isolation
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Vertical Anti-Blooming

Remember that one of the image artifacts —
blooming —was caused by charge from one
brightly illuminated pixel spilling into

neighbouring pixels?

Vertical antiblooming is a compact method by
which to drain away excess photo-generated

carriers

» In cross section, the device has the p* channel stops

» and the n" buried channel layer

» a non-uniform p-implant, leading to a “weak” point at
which the spill-over will occur
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Charge Readout

The clever part about using charge as the signal
(rather than voltage or current) is that we can
convert charge to voltage with a high degree of
sensitivity

» by using a capacitor; V = Q/C
So if we make C small enough, we get a large
voltage for a small charge

» typically 10uV per electron
» so a full well of 10° electrons gives an output of 1V

Vout
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The corresponding capacitance is about 16fF

» S0 the diffusion must be small and lightly doped

So now the tactic of waiting longer to integrate
more charge on the pixel makes sense

» we pass on discretised packets of charge, rather than
a continuous current

» because the conversion method is more sensitive
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Fabrication

Having seen how a CCD works, we can now look
at what fabrication processes must be optimised

We will find that a good CCD demands a
process that is substantially different from other
fabrication technologies, notably CMOS

» and the trends of “mainstream” technologies are
exactly to opposite to those required for CCDs

» indeed, some trends are also bad for CMOS imagers
too — see later!

The main issue is that CCDs are, by today’s
standards, macroscopic devices

» and need to be that way for effective imaging &
charge transfer

While CMOS technology, with its standard
libraries and wide availability is getting ever
more microscopic

» for higher speed

» and lower power consumption

CCD fabrication is complex with typically 15 - 25
masks

» so0 we will only look at a the basic features
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Requirements

« We can already summarise some of main
conditions

« Double (or more) poly-Si process

» for overlapping gates

 Deep, complex implants which define

» buried channel and p-well (with VAB)
» channel stops

 Relatively high operating voltages

» to get a good potential well in the buried layer
» typically 10 - 20V

« The serial nature of the CCD means that,
conventionally, all of the video data passes
through a single output node

» this is good because it reduces errors due to
component mismatch

» but the subsequent electronics has to able to cope
with the video-rate data

» which is tough without speed-optimised devices

« To reduce this problem some CCDs are sub-
divided and have several outputs

@
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p-Well

« The p-well is formed from implanted B ions

» ~100keV & ~1012 cm3

 Under the photo-sensitive elements, the location
of the well “weak” point is defined by masking
out the implant

» a thin SiO, layer is used to protect the surface from
damage due to the implantation
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 Implantation is followed by “drive in”

» the wafer is heated to ~1100°C for 10 hours
» the dopants diffuse downwards and laterally
» I—Iateral . O'75|—downwards

» this fills in the gaps between the implants to give the
“weak” point required for VAB

 The final depth of the p-well is ~2.5um at the
shallow point and 3.0um elsewhere

@
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Channel Stop Implant

The p* channel-stop regions are again formed
using ion implantation

» B*ions at 50keV and 2 x 1013 cm?3

This implant is driven in during the high
temperature cycle (>1000°C) used next to grow
the gate oxide

» to a final depth of about 1pum

A trade-off here is that driving the p* implant
deep enough also causes it to spread sideways

» taking up valuable space between the rows of pixels

An important fact to note is that there are
several high temperature process steps, each
requiring temperatures in excess of 1000°C, e.g.
» p-well drive in

» channel drive-in

» gate oxide

» inter-poly oxides between gates

So the final depth of the implants is a function of
the cumulative effects of all these steps
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Gate Oxide Thickness

« The oxide layer that isolates the gates from the
channel is grown using the same high-
temperature step that drives in the channel stop

« The original protective SiO, layer is removed
and the wafer cleaned

» thermal oxide offers the best Si — SiO, interface

A typical gate oxide is 80nm thick

« Compared with values for modern CMOS
processes (< 10nm), this is very thick

» and is needed because of the higher CCD operating
voltages

» 10V as opposed to 3.3V (or less)
 Later fabrication stages include

» deposition and patterning of several poly-Si layers and
inter-poly dielectrics

» (this gets tricky because of the surface topography)
» metal layers and contact vias

» n*-implants to make source/drain regions at the CCD
input and output

» colour filters and/or microlenses
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