Part III: Noise in Image Sensors

Introduction

- We have seen how pixels are designed to maximise the sensitivity to illumination
- However, this is only part of the story
- The overall performance of the sensor is ultimately limited by the noise that is added by the system to the signal
- In this sense, the noise figure of the detector system is a measure of its "perfection"
- Noise comes from numerous sources and its minimisation requires optimisation of many individual parts of the system
- Our discussion will not consider external noise sources, such as electrical pick-up
 - » the only "external" noise we will include is noise in the optical signal itself
- The treatment of noise is a complex subject, and it is even harder to measure the individual components accurately
 - » the theoretical treatment is important, however, as a design tool for optimising the performance of specific stages in the system

Types of Noise

- "Noise" in image sensors is typically separated into two categories
 - » random noise
 - » pattern noise
- Random noise is what you might call "real" noise
 - » it is temporally random and is not constant from frame to frame in the image
 - » hence, it can be reduced by averaging successive frames
 - » and is described by statistical distributions
- Pattern noise is effectively a spatial noise as seen by the observer of the image
 - » it does not change significantly from frame to frame
 - » and so cannot be reduced by frame averaging

• Pattern noise is divided into two components

- » fixed pattern noise (FPN)
- » photo-response non-uniformity (PRNU)

Pattern Noise

- FPN is the component of pattern noise measured in the absence of illumination
- It is mainly due to variations in
 - » detector dimensions
 - » doping concentrations
 - » contamination during fabrication
 - » characteristics of MOSFETs (V_T, gain, W, L, etc.)
- PRNU is the component of pattern noise that depends on the illumination

PRNU depends on

- » detector dimensions
- » doping concentrations
- » thicknesses of overlayers
- » wavelength of illumination (spectral response)
- Historically, pattern noise (FPN in particular) has been the factor limiting the acceptability of CMOS imagers
 - » PRNU is not often mentioned ...
 - » shortly, we will see how FPN can be reduced

Describing Noise

- Pattern noise is usually specified in terms of the variation in the signals from individual pixels under uniform illumination
 - » usually as a percentage of the saturation output
- Random noise is expressed in terms of parameters which describe the statistical distribution of voltage or current
- If there are n samples of the signal

» x₁, x₂, x₃, . . . x_n

- then the mean is $x = (x_1 + x_2 + x_3 + ... + x_n) / n$
- However, the mean for many noise sources is zero
 - » leaving the DC level of the signal unaffected
- So a more useful description of the noise is either the variance (<x²>) or the standard deviation (<x²>, in rms units)
 - » which measures the scatter of the data points about the mean

$$\langle \mathbf{x}^2 \rangle = \frac{1}{n} \frac{n}{j=1} \left(\mathbf{x}_j - \mathbf{x} \right)^2$$

To sum noise sources, we have to add the variances

$$\left\langle x^{2}\right\rangle =\left\langle x_{1}^{2}\right\rangle +\left\langle x_{2}^{2}\right\rangle +\left\langle x_{3}^{2}\right\rangle +...\left\langle x_{n}^{2}\right\rangle$$

• or the standard deviation is given by

$$\left\langle x\right\rangle = \sqrt{\left\langle x_{1}^{2}\right\rangle + \left\langle x_{2}^{2}\right\rangle + \left\langle x_{3}^{2}\right\rangle + ...\left\langle x_{n}^{2}\right\rangle}$$

Importance of Noise

• We can illustrate the importance of the noise on the overall sensor performance as follows

- Dynamic range = (saturation signal / rms noise level)
 - » saturation 200,000 e⁻, noise 40 e⁻ rms
 - » typical value is 5,000 for a PD (~75dB)
 - » assuming dark current is not the limiting factor

- Responsivity = (# electrons / light intensity)
 - » in linear portion of the curve (electrons.cm²/ μ W)
- Provided that the dark current is small, the minimum resolvable signal is determined by the noise in the system
- Hence, a good responsivity is not enough to ensure a good signal at low light levels
 - » a low "noise floor" is also required
- In a convenient model, the rms system noise is

$$\left< n_{sys} \right> = \sqrt{\left< n_{shot}^2 \right> + \left< n_{floor}^2 \right> + \left< n_{pattern}^2 \right>}$$

- » where the floor is determined by the amplifier noise, the reset noise, and the analog-to-digital converter noise
- » the noise floor is often referred to as the <u>read noise</u>
- The other noise included above is called the shot noise, which arises because of the statistical arrival of electrons
 - » due to the photo-generation of the electrons
 - » and the thermal generation of electrons
- We will now examine some of the noise sources present in image sensors

Thermal Noise

- Thermal noise is a white noise
 - » the noise power is constant over all frequencies
- For a resistor, the thermal noise root mean square voltage is given by

$$\left< v_{th} \right> = \sqrt{4kTBR}$$

- » where R is the resistance, and B is the noise equivalent bandwidth
- Since the thermal noise covers the entire frequency range, the bandwidth determines the actual amount measured
- So the <u>open circuit</u> equivalent circuit is

• Alternatively

$$\left< \mathbf{i_{th}} \right> = \sqrt{\frac{4kTB}{R}}$$

 However, an important factor is the noise equivalent bandwidth for use in the calculation

Noise Equivalent Bandwidth

- This is defined as the voltage-gain-squared bandwidth of the circuit
- The ideal case is that the (gain)² is constant at a value of A₀² up to the bandwidth (A₀ = voltage gain)

• Mathematically, this is given by

$$\mathbf{B} = \frac{1}{\left|\mathbf{A}_{0}\right|^{2}} \left|\mathbf{A}(\mathbf{f})^{2}\right| d\mathbf{f}$$

- So in the ideal case bandwidth = $\frac{1}{A_0^2} |A|^2 df = \frac{A_0^2 B}{A_0^2} = B$
- If we take the example of an RC low pass filter

• Calculating the transfer function

A() =
$$\frac{v_{out}}{v_{in}} = \frac{\frac{1}{j C}}{\frac{1}{j C} + R}$$

= $\frac{1}{1+2 fRC}$ since = 2 f
= $\frac{f_0}{jf + f_0}$ where $f_0 = \frac{1}{2 RC}$

- At f = 0, $A(f) = A_0 = 1$ for this circuit
- Now we can calculate the noise equivalent bandwidth, using A₀ = 1

$$B = \frac{f_0}{\sqrt{f^2 + f_0^2}} df$$
$$= f_0^2 \left(f_0^2 + f^2 \right)^{-1} df$$
$$= -\frac{1}{2} f_0$$

 The reason for choosing this example is that it is directly applicable to the resetting of photodiodes and the output nodes of CCD and photogate pixels

Reset Noise

 If we consider a diffusion (either a floating diffusion or a photodiode) being reset through a MOSFET

• Effectively, this is a capacitance being charged through the resistance of the MOSFET channel

• So the ac-equivalent circuit is

• From before, the bandwidth is

$$\mathbf{B} = \frac{1}{2}\mathbf{f}_0 = \frac{1}{4\mathbf{R}\mathbf{C}}$$

• So we find the rms noise voltage

$$\left< \mathbf{v_{out}} \right> = \sqrt{\frac{\mathbf{kT}}{\mathbf{C}}}$$

- Usually, the noise voltages is expressed in terms of electrons, in order to compare directly with the electrons in the well
- In which case the reset noise on the capacitor is calculated from Q = nq = Cv_{out}, and the rms noise <u>electrons</u> is given by

$$\left< n_e \right> = \frac{C}{q} \sqrt{\frac{kT}{C}} = \frac{\sqrt{kTC}}{q}$$

- This noise is generally called "kTC noise" or, in this case, reset noise
- Calculating this out at room temperature gives $\left< n_{kTC,RT} \right> = 400 \sqrt{C(pF)}$
- For a floating diffusion C ~ 20fF, so n_{kTC} = 55 e⁻
- For a (10µm)² photodiode, C ~ 60pF, so n_{kTC} = 100 e⁻
 - » currently, reset noise limits the read noise in PDs

Shot Noise

- Shot noise is another white noise that arises from the discrete nature of the electrons themselves
 - » i.e. the random arrival of particles of charge
- This is the result of the random generation of carriers
 - » either by thermal generation within a depletion region (i.e. shot noise of the dark current)
 - » or by the random generation of photo-electrons, caused in turn by the random arrival of photons
- The rms signal is given by

 $\left< i \right> = \sqrt{2 q I_{dc} B}$

- If the noise statistical distribution is described by a Poisson distribution
 - » the variance is equal to the mean

 So, if electrons are generated with a current density, J_{dark}, in a sensor of area, A, over an integration time, t_{int}, the shot noise variance is

$$\left\langle n_{dark}^2 \right\rangle = n_{dark} = \frac{J_{dark}At_{int}}{q}$$

• Similarly, the photo-electron shot noise variance is given by

$$\left\langle n_{pe}^{2}\right\rangle = n_{pe} = I_{0}At_{int}$$

- » where I_0 is the photon flux (photons/cm²s) and is the quantum efficiency
- So the total rms shot noise contribution from the sensor is

$$\begin{split} \left\langle n_{shot} \right\rangle &= \sqrt{\left\langle n_{dark}^2 \right\rangle + \left\langle n_{pe}^2 \right\rangle} = \sqrt{n_{dark} + n_{pe}} \\ &= \sqrt{\frac{J_{dark}At_{int}}{q}} + I_0At_{int} \end{split}$$

- For example, with
 - » $J_{dark} = 200 n A/cm^2$
 - » $A = (10 \mu m)^2$
 - » $t_{int} = 30ms$
 - » $I_0 = 10^{13} \text{ photons/cm}^2 \text{s}$
 - » and = 0.5
- we find $\langle n_{shot} \rangle = (37,500_{dark} + 150,000_{pe}) = 430 e^{-1}$

Flicker (1/f) Noise

- At any junction, including metal-to-metal, metalto-semiconductor, and semiconductor-tosemiconductor, conductivity fluctuations occur
 - » the causes of these are still not completely understood
- The rms 1/f noise current is given by

- 1/f noise arises mainly in amplifier circuits where there are numerous such contacts
- At low frequencies, 1/f noise can be the dominant component
 - » but, at higher frequencies, the 1/f noise drops below the thermal noise
 - » the frequency at which this happens depends on the situation

"Referred" Noise Figures

- Conventionally, the noise figures are referred either to the final output or to the output of the optical detector
 - » i.e. to be compared directly with the number of electrons generated by the detector
 - » called input referred noise
- For input referred noise, the noise of later stages must be divided by the gains of the intermediate stages
- Or vice versa for output referred noise
- Usually, authors in CMOS circles use the input referred figure
 - » but this is tough to obtain for intermediate stages in the circuit owing to uncertainties in the gains of each stage
 - only the overall figure in electrons is practically feasible because the appropriate inverse-conversion efficiency (e⁻ per μV) is only known for the entire output circuit

Typical Noise Figures

• From Mendis, the calculated and measured input referred noises for a 128x128 element photogate array are

Noise source	Calculated	Measured
	rms	rms
kTC from reset of FD	negligible	negligible
In-pixel amp. 1/f	111µV	
kTC from column	93µV	
	A (X 7	
Column source	46µ V	
follower 1/f		
Total column noise	86µV	120µV
Total noise	152µV	151µV
Total noise electrons	41 e ⁻	41 e ⁻

- Mendis also reported a photodiode read noise of ~80 e⁻ rms
- Typical read noises for CMOS sensors

Technology	RMS read noise
Photodiode APS	50 - 80 e ⁻
Photogate APS	20 - 40 e ⁻
Logarithmic APS	700 e ⁻
Passive pixels	200 - 300 e ⁻

 Remember that this does not include shot noise or pattern noise

Fixed Pattern Noise

- Fixed Pattern Noise is due to pixel-to-pixel variations in the absence of illumination
- The main cause of FPN in CMOS imagers is variations in $V_{\rm T}$
 - » between reset and buffer MOSFETs in the pixel
 - » and between MOSFETs in the column circuits
- FPN can also arise from repeating irregularities in the array clocking
 - » allowing small variations in integration time etc.
- In very large arrays, resistive drops in reset buses may lead to a "droop" in the voltage to which the pixels are reset,
 - » but this is not usually significant in CMOS imagers
- FPN is just as valid as a "noise" as the temporal variety
 - » both affect the actual output voltage that the pixel produces
 - » in a way that is not directly related to the illumination to be measured

PRNU

- The issue of photo-response non-uniformity has not historically received much attention in the CMOS imager community
 - » although there is now some occasional mention of "gain nonuniformity"
- Like FPN, PRNU is essentially time-independent, but it is signal-dependent
- Both types of pattern noise can be specified in terms of either an rms or a peak-to-peak value, referenced to an average value
 - » e.g. the full-well capacity
- A histogram of output signals is built up in the dark or light, as appropriate
 - » PN_{rms} = rms of distribution / average value
 - » PN_{p-p} = peak-to-peak variation / average value
- Since PRNU is signal dependent, it is often expressed as a multiplier of the number of photons
 - $\sim < n_{PRNU} > = Un_{pe}$

Minimum Noise

 In principle, the noise floor and dark current can be reduced so that the system is photon shot noise limited

$$\left< n_{sys} \right> = \left< n_{pe} \right> = \sqrt{n_{pe}}$$

- » this approximation is sometimes used to calculate the pixel sensitivity ($\mu V/e^{\text{-}})$
- But there will never be zero PRNU, so a more achievable value would be

$$\left\langle n_{sys} \right\rangle = \sqrt{n_{pe} + \left(U n_{pe} \right)^2}$$

- » The worst case when $n_{pe} = n_{full-well}$
- If we plot out this limiting noise as a function of PRNU, it looks like

Noise Reduction Techniques

- Having seen some of the common sources of noise in CMOS imaging systems, how might we go about reducing them?
- Essentially, there are three classes of noise
 - » those we can do nothing about, such as photon shot noise
 - » those we can reduce by careful design of circuit components, such as thermal noise
 - » those we can reduce by circuit design, such as FPN
- These techniques are inter-dependent
 - » we shall see that adding extra circuitry to reduce FPN also introduces extra 1/f and kTC noise
 - » so the optimisation of noise is a system issue, not just a question of optimising each element individually
- We will look at the general techniques for reducing noise in electronic devices, as well as circuit techniques for pattern noise etc
- The study of noise is a specialised topic, and we will only look at the essentials

Shot Noise

- As we remarked earlier, photon shot noise is dependent on the illumination level, and there is not much we can do about it
 - » except reduce the QE of the detector, which we don't want to do!
- Shot noise also arises from the pixel dark current
 - » which we can alter
- By changing doping levels, we can reduce the dark current
 - » but, in a regular photodiode, at the expense of QE
- And by removing the collection area away from the surface
 - » this is another advantage of the pinned photodiode

• The magnitude of the dark current is, of course, dependent on the pixel area

- » so the shot noise will be smaller for smaller pixels
- » although the perimeter component of the dark current means that S/N still gets worse as pixel dimensions are reduced
- But shot noise is not usually the limiting factor

Thermal Noise

- Thermal noise is important mainly in the input stages of amplifiers
 - » because of the (4kTBR_{channel}) from the MOSFETs
- In general, the power spectrum of the thermal noise will be proportional to (W/L)⁻¹
- But it is also dependent on the current through the devices
- A common way of expressing thermal noise is the <u>noise electron density (NED)</u>

$$NED(f) = \frac{e_n(f)C_t}{q}^2$$

- » where e_n(f) is the total equivalent noise voltage at the output stage (e.g. a floating diffusion)
- and C_t is the total capacitance present at the input, including diffusion capacitance, gate capacitance, and everything else (to convert to electrons)
- e_n(f) represents the device noise, referred to the input
 - » and so includes all factors such as the transistor geometry, i_{DS}, device area etc. that affect the gain

- Increasing W, for a fixed L, increases C_t because of the device area
- But increased W decreases e_n(f)
 - » because the current i_{DS}, and the gain of the circuit, are increased
 - » therefore reducing the input referred noise
- So the optimum condition is to keep W 15µm in these transistors
 - » too small a W reduces the gain
 - » and too large a W increases the C
- Also the NED decreases with L, which makes smaller devices advantageous

1/f Noise

- 1/f noise arises mainly from trapping detrapping of electrons at the Si-SiO₂ interface
- So we can do two things to minimise 1/f noise
 - » reduce the device area, W x L
 - » use a buried channel device to separate the channel from the interface

• While in standard CMOS we cannot do much about the second option, we could reduce W x L

- » but the gain of the amplifier is dependent on W/L
- » so reducing L is the best choice!
- In the pixel, this is a good thing since we want to minimise the areas of the transistors anyway, to achieve a high fill factor
 - although care is needed to ensure that the pixel source follower can adequately drive the column capacitance (i.e. enough W/L)
- Note that we need the noise added at early stages of the process to be minimised
 - » since this is amplified at all subsequent stages

Correlated Double Sampling

- Reset noise is difficult to design out of the system
 - » since the properties of the transistor cancel out
 - » although reducing the capacitance of the node is useful for both kTC and conversion efficiency
- So the most common solution is to measure the value of the reset noise and then to subtract it from the signal
- A generic circuit for achieving this in a CCD or floating gate APS would be

- During the sample and hold period, the appropriate switches are pulsed on & off
 - » to leave the voltages stored on the capacitors

 The sequence of events for a CCD or photogate would be

• Here, the reset signal is given by

» $V_{reset} = [V_{DD} - (V_T \pm V_T)] \pm (V_{kTC}) \pm (V_{part})$

• Here the V_T is the component of FPN arising from mismatches between the reset transistors

» and is approximately the same for each frame

• V_{kTC} is the reset noise

- » and is different from frame to frame
- Note that we are considering <u>voltages</u> (not electrons) at this stage
 - » so the "kTC" noise is given by (kT/C), and is therefore reduced for larger C

- V_{part} refers to what is called the partition noise
 - » when the reset FET turns off, the channel charge moves either to the source (= FD) or to the drain
 - » but we do not know exactly how much goes to each
- This type of sample-and-hold technique is known as <u>correlated double sampling (CDS)</u>
- The "correlated" part comes about because the noise component of the two signals is correlated, and can therefore be subtracted out
- In a CCD, a single CDS circuit is needed because there is only one floating diffusion output node
- In CMOS APS, there is an output node per pixel
 - » but practically, we need only one CDS circuit per column of the array
 - » and the S&H is carried out for all columns in parallel

CDS for Photodiode APS

- This form of CDS works very well for pixels with a floating diffusion output node
 - » photogate, and pinned photodiode with transfer gate
- Indeed, the main advantage of using the photogate structure is to facilitate the removal of reset noise
 - » since the improvement in conversion efficiency is offset by the lower QE
- In photodiode designs, double sampling can only remove the FPN that results from mismatches
 - » this is because the double sampling is <u>not</u> correlated
- In FD designs, the signal was added to the existing (and stored) reset value
 - » so the subtraction was of <u>exactly the same</u> noise signals
- In the photodiode, there is no separate output node, so the signal must be read out first
 - » and this signal includes the original reset voltage on the photodiode
 - » which in turn includes FPN and kTC noise

- We can now reset the pixel again and subtract this value
 - » the FPN will be much the same as that which was included when we sampled the signal
 - » but the kTC noise will be different, i.e. not correlated
 - » remember kTC is the rms value of a distribution

• So now the sequence of events is

- This would be better termed pixel double sampling
- Or, alternatively, a graphical representation is as follows ...

- This is the reason why reset noise is now the limiting noise source in photodiode circuits
- Note that even this noise reduction is unavailable to the logarithmic pixels, hence their poor FPN characteristics
- The conventional CDS circuit used in CMOS sensors is shown below

- Of course, the additional circuitry required for the CDS implementation adds further noise to the signal
 - » kTC from the sample-and-hold capacitors
 - » 1/f and thermal noise from the transistors
- But usually in CMOS sensors, the FPN is the more critical issue

Column FPN

- The other issue with using column-wise CDS is that FPN is then added by the CDS circuits themselves
 - » appearing as vertical streaks in the image
- This can be removed by storing and subtracting column reference signals off chip
- Alternatively a second stage of double sampling is performed
 - » where, after the readout of the differential signal, the S&H capacitors are shorted together
 - » this results in a differential output that is a measure of the mismatches between the two sets of output stages
 - » Mendis calls this a "crowbar" circuit and the process delta difference sampling

Typical Figures

- Typical figures for FPN are hard to define because it depends so much on the precise process used
- For photogates with a 2µm CMOS process, Mendis reported a p-p FPN of 1% – 2.5% saturation with the CDS circuit
 - » falling to ~0.1% sat. with the DDS as well
- A photodiode fabricated similarly showed a p-p FPN of ~0.5% sat. after CDS, and ~0.1% after CDS + DDS
 - » typical raw data are about 2 3% p-p sat.
- For a 0.35µm process, the raw FPN for a PG array was 6% sat.
 - » reducing to 0.4% after off-chip correction
- Mansoorian et al. give a final FPN of 0.6% sat. pp for both PG and PD using a 0.55µm process
 - » using a similar DDS technique
- For logarithmic pixels, IMEC report a raw FPN of ~100% of the useable signal range!

Patent Issues

- Other methods of reducing noise are possible, although probably not so good
- Hitachi have several patents which cover the idea of active pixel sensors and the use of CDS in these devices
 - » in their CMOS digital still camera, VLSI Vision use a mechanical shutter in order to measure a true dark image for subsequent subtraction

One possibility is to smooth out large signal variations between neighbouring pixels

- » a smooth curve is fitted through points either side of the test point, and the test point moved to fit that curve
- » the smoothing is improved if the number of neighbours is increased, but the "sharpness" of the image is lowered

Feedthrough & Crosstalk

- We have considered here "natural" sources of noise such as 1/f, thermal, and shot noise
- And technological noise, such as FPN and PRNU
- In addition to these, there can be unwanted signals in one part of the circuit due to the operation of another part
 - » these can be addressed in the design of the array and circuits
 - » although some sources are not easy to eliminated
- Feedthrough of digital signals from control lines into the analog parts of the circuit can be a problem
 - » analog and digital sections of the chip can be separated to some extent
 - » but the array itself, and much of the analog signal processing is intrinsically both analog and digital
- The minimisation of these effects requires careful layout
 - » and mixed signal design is currently a hot topic in many areas, such as A-D & D-A conversion, DSP etc.

References – Part III

- » H.W. Ott (1988), "Noise reduction techniques in electronic systems", Wiley
- » G.C. Holst (1996), "CCD Arrays, cameras and displays", SPIE Press
- » T.E. Jenkins (1987), "Optical sensing techniques and signal processing", Prentice Hall
- S.K. Mendis (1995), "CMOS active pixel image sensors with on-chip analog-to-digital conversion", PhD Thesis, Columbia University, USA
- » B. Mansoorian et al. (1997), "Megapixel CMOS APS with analog and digital outputs", IEEE CCD and AIS Workshop, Bruges, Belgium, June 5 - 7, 1997
- S.K. Mendis et al. (1997), "Active pixel image sensors in 0.35µm CMOS technology", IEEE CCD and AIS Workshop, Bruges, Belgium, June 5 - 7, 1997
- » O. Yadid-Pecht et al. (1997), "Wide intrascene dynamic range CMOS APS using dual sampling", IEEE CCD and AIS Workshop, Bruges, Belgium, June 5 - 7, 1997
- » B. Dierickx et al. (1997), "Offset-free offset correction for active pixel sensors", IEEE CCD and AIS Workshop, Bruges, Belgium, June 5 - 7, 1997