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Part II:
Fabrication Technology
and
Pixel Design
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Introduction

• In this section we will take the ideas of optical
detection and examine how they can be applied
to practical optical detectors

• We also need to know how the fabrication
technology influences the performance of the
sensors

• So we will first look briefly at CMOS technology,
and then dwell longer on how the future
development of CMOS will affect image sensors

• In the second half of the section, we will discuss
the four basic types of CMOS pixels

» passive pixel photodiode

» linear active pixel photodiode

» logarithmic active photodiode

» photogate active pixel
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Fabrication of CMOS
Imagers
• The first part of the idea of using “standard”

CMOS technology for imagers is to use a
widespread, accessible process

» with well-developed design tools

» standard design libraries

» fast turn-around time

• The second part is that fully integrated camera
systems can be built on a single chip, featuring

» low power consumption (low voltage operation)

» small, robust, and inexpensive

» integrated clocking and addressing

» focal-plane image processing

» A-D conversion, signal encoding

• We will find that, while the second part is
becoming true, there may be some problems
with the first part

• Here, we examine the trends of CMOS
technology and their implications for fabricating
imagers

» we will also compare briefly CCD and CMOS
technologies, and consider the hybrid CCD/CMOS



 51R.I. Hornsey, University of Waterloo

Features of Sub-micron
CMOS Technology
• In the following few pages, we will examine the

evolution of CMOS technology

• A simplified cross section through a sub-micron
CMOS process is shown below to illustrate the
relevant features
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Effects of Technology
Scaling
• One of the “selling points” for the surge of

interest in CMOS imagers has been the
attraction of using standard processing to

» reduce development costs

» reduce fabrication costs

» reduce dependence on a single supplier

• However, the question was naturally asked
about how the rapid development of these
“standard” processes would influence the
imager performance

• The following pages are based on the 1994
Semiconductor Industry Association roadmap

» the updated 1997 version applies even more so!

• Each aspect of scaling will be considered
individually, along with the potential impact on
CMOS imagers

» the seminal work on the subject is by Wong, from IBM
(see references)
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Feature Size
• A new generation of CMOS devices is developed

every three years, or less

» device dimensions are less than 0.7 times those of the
previous generation

» 0.25µm technology is in production

• This is driven by the desire for

» lower power consumption

» higher speeds

» increased functionality

• Additional impact on CMOS imagers

» improved fill factor

» improved conversion efficiencies
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Lower VDD
• Partly forced by reduced dimensions

» because electric fields cannot be too high

» e.g. hot carrier effects & tunneling

• Partly for lower power consumption (P ∝ VDD
2)

• The curve below clearly shows the trend
towards VDD  ≈ 1V

• Impact on CMOS imagers

» reduced analog voltage swing, VDD - VT

» hence, reduced dynamic range

» analog signal processing becomes difficult
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Brews’ Rule

• When the channel lengths of MOSFETs become
too short, so-called short-channel effects
become apparent

• The main effect of this scaling is to reduce the
charge under the gate

» which ideally is a function just of the gate potential

» but changes due to the depletion width at the drain,
and hence with VDS

• Short- and long-channel effects can be
summarised as follows

source drain

gate

increasing VDS

IDS

VDS

VGS

short channel

long channel
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• A rule of thumb for determining the minimum
acceptable device length has been developed by
Brews

• Where

» xj is the junction depth in µm

» tox is the oxide thickness in Å

» and Ws and Wd are the source and drain depletion
widths in µm, respectively

• Impact of short channel effects on CMOS
imagers

» increased off-current of MOSFETs (increases
exponentially as VT is reduced) is a potential issue for
some architectures

» p-n junction tunnelling current adds to the pixel dark
current arising from thermal generation

logIDS

VGS

high VDS

low VDS

logIDS

VGS

high VDS

low VDS

Lmin ≈ 0.4 x jtox Wd + Ws( )2[ ]1 3

long channel short channel
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Substrate Doping

• WS,D are dependent on the substrate doping of
the wafer

» this is increasing over the years in order to minimise
short-channel effects

• Impact on CMOS imagers, due to associated
reduction in minority carrier diffusion length, Ln

» good – reduces crosstalk between pixels

» bad – reduces effective volume for photo-charge
collection
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Oxide Thickness

• As the supply voltage decreases, so too must
the threshold voltage

» although this is also affected by substrate doping

• VT is dependent on 1/Cox, and therefore tox must
be reduced, since Cox = εSi/tox

• Impact on CMOS imagers

» reduced voltage swing, as before, since VDD scales
faster than VT (see later for plot of trend in VDD - VT)

» gate tunnelling current potentially important for some
MOS capacitor devices

Year
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Source/Drain Junction
Depth
• Source and drain junction depths are important

in determining the influence of the drain
depletion region on the MOSFET characteristics

» as indicated in Brews’ rule

• More lightly doped n- and p-wells may be a few
times deeper than the junction depths

» so, ~ 0.5µm at the moment

• Impact on CMOS imagers

» reduces the effective volume for collecting photo-
charge, hence reduced quantum efficiencies

» possible increase in surface effects
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New materials

• One major change that has been made in the
materially-conservative semiconductor industry
is the introduction of silicide layers

» to reduce contact and sheet resistances of
source/drain regions and gates, respectively

» usually WSi2, TiSi2, CoSi2

• This is important for imagers because silicides
are relatively opaque to visible light

• At the 0.5µm technology level, silicide layers can
be optionally masked out

» but it is not clear whether this will continue to be the
case in future technologies

• Mendis has reported that a pixel’s sensitivity is
reduced to 20% of its former value in the
presence of the silicide layer

» which is consistent with the silicide transmission
spectrum
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Conclusions

• Wong’s conclusions may be summarised as
follows

» full integration offered by CMOS devices is still
advantageous

» sub-0.5µm technology will not be optimal for imaging
without some process changes

» other costs (packaging, testing) are more important
than the extra costs incurred by using a slightly non-
standard process

• While Wong’s conclusions may be technically
correct, it is still not clear what influence
technology scaling will actually have

» cheaper and wider access to older technologies may
remain more attractive

» process tweaks do not just raise costs, but also
reduce second sourcing options and portability

» even if advanced technologies are used, the system
design may mitigate many disadvantages without the
need for tweaking

• In the end, the balance depends on the
application

» and it is likely that a continuum of techniques will
develop between pure CCD and pure CMOS
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Comparison of CMOS &
CCD Technologies
• We can write down broad requirements for each

technology

• CCD

» gate oxide thickness ≈ 800Å

» p-well depth > 2.5µm

» channel stop depth ≈ 1µm

» channel depth ≈ 0.8µm

» typical operating voltage ≥ 10V

» several poly-Si and inter-poly dielectrics needed

• CMOS

» gate oxide thickness ≈ 50Å

» well depths ~ 0.5µm

» source/drain implants ≈ 0.1µm

» operating voltage ≤ 3.3V

» digital process has 1 poly, analog has 2 polys

• A comparison of these figures makes clear why
it is difficult to integrate the two technologies

» essentially, a full-featured combination would require
almost all the stages from both processes

» which means maybe > 30 masks
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Combined CMOS/CCD

• To date, the reduced yield and increased costs
has not made a combined CMOS/CCD process
viable

• The combined process is neither standard
CMOS nor standard CCD, and so requires
extensive development expenses

» and the frequent result is that neither part will work
particularly well

• Several processes have been reported which
claim to preserve the quality of each technology

• Suni Imaging Microsystems are advertising a
hybrid process which has

» only “3 or 4” more masks than standard CMOS

» 5V operation

» and works by separating out CCD and CMOS regions
on the chip

» CCDs can run satisfactorily at 5V provided their area
is enough to ensure a reasonable full well capacity

» for high resolution – small pixel area – higher voltages
are generally required to achieve the full well, so some
compromise must have been made here
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• The alternate approach is to start with a CCD
process and add in extra process modules

» e.g. that reported by Eastman-Kodak

» extra CMOS steps added

• Such a process required 4 additional masks and
3 extra implants

» a BiCMOS process is also demonstrated, with 3
additional masks and 3 implants for a NPN transistor

• Despite the demonstrated feasibility of
CMOS/CCD hybrids, the idea has not yet taken
off

» possibly because few places have access to both sets
of fabrication facilities and design experience

substrate active area poly 1 poly 2 n+ source
& drain

annealing photo-
diode

isolation metals 1,2

n-well Vt adjust

p+ source 
& drain

extra CMOS steps
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CMOS Photodiode Pixels

• We have already seen something about how we
might build pixels using CMOS technology

• Now we will look in more detail at the different
designs of pixels that have been fabricated
using CMOS

• Although there is one dominant sensor type –
the photodiode – there are several possible
implementations

• And there are additional topologies which draw
on CCD ideas

• Here, we will not dwell greatly on either the rest
of the in-pixel circuitry or on the support circuits

»  these will be the topic of a future section

• In passing, we will mention some of the sources
of noise in the imaging arrays

» these too will be drawn together later
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“Photon Flux Integrating
Mode”
• The operation of a photodiode in the “charge

integration” mode discussed earlier is not
recent

» it was proposed in 1967 by Gene Weckler

• In the original proposal, the circuit was
presented much as we did before

» although Weckler also demonstrated that a MOSFET
could serve adequately as the switch

• We can follow a simple analysis for the output
voltage of the diode as a function of time, after
the diode has been reset

• Here, we note that the current in the capacitor
must be equal and opposite to the photocurrent

» because the diode is isolated

» and we will ignore the dark current

reset
Vdd

V

0
C

diode
iphoto + idark
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• Hence

• For a n+p diode, the capacitance is

» where A is the diode area, and NA is the acceptor
concentration in the substrate

• So we find

» where V0 is the diode built in voltage, and Vreset is the
reset reverse bias

• And thus

• While this expression includes a term in A, the
diode area, this cancels out because

» where I0 is the incident flux of photons
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• So the collected voltage is independent of the
diode area for a given photon flux

» if we think of V = Q(A)/C(A), then both Q and C are
proportional to area so the voltage is unchanged

• If we calculate V(t) as a function of time for

» A = (10µm)2, Vreset = 5V, NA = 1016 cm-3 , and iphoto =
1pA (small), we find the following curve

• The voltage drop is almost linear for short times

» which is what we want!

» remember this does not include dark current
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Fill Factor

• So why are we worried about the fraction of the
pixel that is light-sensitive – the “fill factor” – if
the area cancels out?

• This is because the foregoing analysis is only
part of the story

» capacitance does not come just from the pixel area

» and we must consider sources of capacitance external
to the pixel

» and there are other unwanted sources of charge

• Firstly, capacitance arises both from the “floor”
(the area capacitance) of the implanted region
and from the “wall” (the periphery)

CA

CPCPCP

CA
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• For a 0.5µm process, the capacitances at zero
bias are

» Cja = 4.7 x 10-4 F/m2

» Cjp = 3.2 x 10-10 F/m

• For a (30µm)2 pixel, the periphery represents
0.08 of the total capacitance

» but this rises to 0.3 for a (7µm)2 pixel

• Alternatively, the area has scaled by 0.05 from
(30µm)2 to (7µm)2

» but the capacitance has only scaled by 0.07

• Thus the smaller pixel generates less voltage
than does the larger one

» because iphoto/Ctotal has scaled by 0.05/0.07 = 0.7

• Secondly, the photodiode is connected to the
outside world

» either to the column bus or to an in-pixel voltage buffer

Cnode

Cpixel(A)
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• Hence, there is a fixed capacitance

» i.e. not dependent on the pixel area

» so Vout = Q(A)/[Cpixel(A) + Cnode]

» which falls as A decreases

• Thirdly, there will be sources of unwanted
charge that are non-linearly dependent on pixel
area

» e.g. dark current comes from both area and periphery

» and/or “reset” noise

» so Vout = [Q(A) + Qnoise]/Cpixel(A)

» therefore as A falls, the signal-to-noise ratio falls

• Fill factor is particularly important for CCDs
because the sensing capacitance is external to
the pixel

» so the more charge you collect during the integration
time – i.e. the larger the photosensitive area – the
better

• A larger photosensitive area also gives a larger
full well capacity

» which should give a larger dynamic range

» provided the limiting factor on the minimum resolvable
signal does not depend on pixel area

» usually, it is later elements that limit the dynamic
range
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• Weckler’s method for reading out the integrated
charge  was to measure the voltage across a
load resistor required to reset the pixel

» switch, S, is closed to reset the pixel to a reverse bias
of V

» for a period of tint, S is opened, allowing the
photodiode to discharge at a rate approximately
proportional to the incident illumination

» when S is closed again, the total charge that must flow
through R to reset the pixel is equal to that “lost”
during the integration period

» and the signal across R is a measure of the voltage on
the photodiode after the integration time

• Weckler also reported the first picture from a
photodiode array (a 200-element linear array)

» he named it a reticon and founded the company of the
same name (now EG&G Reticon)

» and he holds the first patent on photodiode arrays

Passive Pixel Sensors
(PPS)

hf
S R

VVd
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• To integrate this into an array, the suggestion
was to use a single load resistance at the
bottom of a column of pixels

• One of the disadvantages of this readout
technique (especially for large arrays) was the
time required to reset the diode fully through the
resistor

» incomplete reset reduces the dynamic range of the
sensor

• Hence, readout via a charge amplifier was
suggested

out

R
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Charge Amplifier

• An alternative to the resistor readout scheme is
to supply and measure the reset charge using a
charge amplifier

• As proposed, for example by Noble (1968), there
would be one charge amplifier per array

• In the ideal case, the virtual earth of the
amplifier would supply the current needed to
recharge the diode

» once the appropriate addressing transistors are turned
on

• This current would be integrated and converted
to a voltage

» Vout = vi.Cd/Cf

column
select

row
select

Vout

Cf

virtual earth

Cd

vi
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• This charge is stored on Cf after the column or
row transistors are turned off

» and the amplifier and the whole line must be reset
between pixels by shorting Cf

• While this approach is simple in principle, it is
almost useless in practice

» owing to parasitic capacitances, CL, of all the data
lines, since all diodes are connected to the one input

• This is bad because Cd can charge from CL

instead of Cf – charge is shared between CL & Cf

» and so Cf will not record the full charge required to
reset the diode

• The effective value of Cf at the amplifier input is

» C´f = (1 + A)Cf (from Miller’s theorem)

» and only C´f/(C´f + CL) of the reset charge comes from
the charge amplifier

» hence the value of Vout can be significantly reduced

Cf

Cd CL

A
+
-

C´f
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• Many research groups and companies have
used PPS

» we will consider the pros and cons below

• The modern implementation reduces the
capacitance problem by

» using one charge amplifier for each column in the
array

• And use just one addressing MOSFET

Modern Implementation

row m

row m+1

Vref

reset

Cf

+

–

to reset diodes to reverse bias
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• When the address transistor is switched on

» a current flows via the resistance and capacitance of
the column bus because of Vref - Vdiode

» this total charge required for this reset is integrated by
the capacitor Cf, and output as a voltage

» so the final bus and diode voltages are returned to Vref
by the charge amplifier

» the address FET is turned off, and the voltage across
Cf is removed by the reset FET

• The column bus R & C is still important because
they affect

» the speed at which the pixel can be read out

» and the noise associated with the readout (see later)

• Thus the use of PPS these days is limited to
small array sizes and slow readout

» typically the “quality” is about 1/10 that of a CCD
detector of similar dimensions

» and PPS are generally out of fashion

• Two problems arise from the use of one charge
amplifier per column

» differences between amplifiers

» reset speed is limited by the maximum size of FETs
that can fit into the limited space available in the width
of a column
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• A typical 0.5µm process has a metal-1 to
substrate capacitance of 50aF/µm2

» leading to the capacitance of a 3µm x 10mm bus of
not less than 1.5pF

» and there is extra capacitance due to the devices
attached to the bus, say 2pF

• Recall that the (30µm)2 pixel capacitance is
about 0.15pF

» so about 10% of the bus capacitance

• A typical value for Cf is 0.2pF

» which gives an effective value of C’f ≈ 20pF at the
input to the charge amplifier

• This means that only ≈ 90% of the charge
required to reset the diode comes from the
integrating capacitor

» this represents a significant loss of sensitivity

Typical Values
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Advantages of PPS

• Despite the drawbacks in the readout technique
of PPS, they have some advantages

• The main advantage is that the fill factor is
maximised

» because there is only one transistor

• This allows the pixels to be smaller for a given
technology

» which keeps die sizes smaller

» and devices cheaper

• It is also argued that the simplicity also enables
a higher yield to be achieved

» which would also keep costs down

» but this is less important in these days of high quality
fabrication

• In common with other photodiode-based
sensors, the quantum efficiency is high

» because there are as few layers as possible
overlaying the device
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Hitachi R&D Effort

• One of the few companies to carry out serious
R&D into CMOS image sensors in the years
between ~1970 and ~1990 was Hitachi Ltd.

» seeking alternatives for colour hand-held video
cameras

• In a series of papers, Hitachi researchers
reported essentially complete single-chip colour
cameras

» at relatively low 484 x 384 resolutions

» but the fabrication technology was 3µm NMOS

» this type of integration has only been achieved in
commercial products in the last few years

• These Hitachi sensors were still the passive
pixel arrangement

• Hitachi abandoned their efforts in the late 1980s

» but they hold several vital patents for active pixels and
noise reduction circuitry

» these patents are still in force today, so other
companies are having to take these into account
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Active Pixel Sensors (APS)
• In the same 1968 paper, Noble shows the first

use of a MOSFET buffer amplifier in the pixel

» this has become known as an active pixel sensor
(APS), which Noble also considered to be superior to
the PPS

» and an improved study and analysis was reported by
Chamberlain shortly afterwards

• In these early devices, variations between the
individual diodes and MOSFETs were significant

» variations in diode dark currents and MOSFET
threshold voltages

» variations in leakage, capacitance etc. in circuitry

• Overall signal-to-noise ratios were only about 1

• It was these variations, due to the immature
fabrication technology, that allowed CCDs to
gain the dominance that still exists

» CCDs had a smaller fixed pattern noise

» and a smaller pixel size because there were no (large)
transistors in the pixel

• Relatively little APS research was carried out for
another 10 years, and it took 20 years for major
interest to be renewed
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Modern APS
• With improvements in the CMOS fabrication

process brought about by the computer
industry, CMOS imagers have again become
viable

» these improvements have reduced device-to-device
variations to manageable levels

» while they are not yet as good as CCDs, the other
advantages of CMOS imagers frequently make the
performance penalty worthwhile

• The basic form of APS employs the familiar
photodiode, and a readout circuit of three
transistors

Vbias
load

transistor

Vout

reset

VDD row
select

n+

p-sub

pixel

column bus

M

L
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• Here, the idea is that the photodiode
capacitance just includes

» the diode itself

» the source of the reset transistor

» and the gate of the MOSFET, M

• M acts as a voltage buffer to drive the output
independently of the diode

• There is a single load transistor for each column

» this minimises pixel area

» minimises pixel-to-pixel variations

» and works because only one row of the array is
activated at any time

• A typical pixel layout would look like

reset

row select
columnVDD

VDD

substrate

n+
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Reset

• Fabrication usually takes place into a p-type
substrate

» and the n+ source/drain diffusions of the NMOS
transistors are used for the photodiode

» n-type device wells are needed for PMOS transistors

» and there needs to be space both between the
devices and the well, and between the well and other
things

• Hence NMOS transistors are most space-
efficient because they do not need a separate
device well

» which takes up valuable pixel area

» and NMOS reset transistors are currently almost
universal

S D

G

n-well
p-sub

clearance

clearance

S D

G
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• However, this has an important drawback

» an NMOS transistor with VDD on both G and D can
only get to a source voltage of VDD - VT

» before it switches off, because VGS < VT

• Therefore, the photodiode can only be reset to a
voltage of (VDD - VT)

» this limits the dynamic range of the sensor

» and introduces a major source of non-uniformity

» the trend with device scaling is shown below

• Maybe it is time to re-assess the use of PMOS
reset transistors

» since device scaling reduces the impact of including
the n-well
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Readout
• If we consider the readout circuit for an

individual pixel

» ignoring the row select transistor for the moment

• Provided that Vout > Vbias - VTL, L is in saturation
and can be idealised by a current source, i

» Vbias ≈1.5V, so Vbias - VTL ≈ 0.5V

» M is always in saturation, if Vdiode -Vout > VTM and
ignoring any body effect

• For transistor M

• Rearranging gives

M

L

Vdiode

Vbias

Vout

MVdiode

I

VDD

0V

Vout = Vdiode − VTM + i
K

 
 
 

 
 
 

where K = 1
2

µCox
W
L

 
  

 
  

i = K VGS − VTM[ ]2 = K Vdiode − Vout − VTM[ ]2
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• The maximum possible Vout = Vdiode - VTM

» or, including the reset voltage, Vout < VDD - (VTM + VTR)

» but this is only if i = 0

• But otherwise, the output is linearly proportional
to the diode voltage

• So the maximum practical output swing is

»   Vbias - VTL < Vout < VDD - (VTM + VTR)

• Hence, the bias voltage should be minimised,
while still keeping the load , L, turned on

• From the above, we can now see that the row
select transistor does not add any further
voltage drop

» even when Vout is at its maximum, VGS for the row
select is still greater than VT so there is no further loss
of signal

VDD

(Vdiode)max = VDD - VT

VDD

Vbias

(Vout)max ≈ VDD - 2VT

Vmax ≈ VDD - 2VTM

L

row select
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Typical Figures
• For photodiode APS, the typical fill factor is

about 20 – 35%

» taking into account the photosensitive area as a
fraction of the total pixel area

» pixel area = (total sensor area)/(n x m pixels)

• The real pixel size is called the “pixel pitch”

» and is the (array width) / (n columns) or (array
height)/(m rows)

» which are not necessarily the same

• Typically the pixel pitch ~ 15 x min. feature size

• The peak quantum efficiency (QE) is ~40% at
green wavelengths

• Conversion gain ~ 3µV/e-

» which is quite low compared to CCDs and photogate

• Saturation signal ~ 300,000 e-

• Dynamic range ~ 6000:1 (75dB)

• The maximum commercial array size is currently
about 1024 x 1024

» although larger experimental devices have been
reported
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Log. Photodiode APS

• An interesting variant on the basic 3-transistor
APS circuit allows for a logarithmic response
from the sensor

• If the dynamic range is limited by voltage
swings in the circuit, and not by the full-well of
the diode

» then logarithmic encoding of the photo-signal allows
for a much wider dynamic range

» i.e. same voltage swing for a wider range of
illumination

• This can be achieved very simply

• Because iphoto is very small, the apparent
resistance of the photodiode is large

» and the voltage at A is only slightly lower than VDD

» in fact, just low enough so that iDS = iphoto

iphoto

VDD

row
select

A

iDS
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MOSFET in Sub-threshold

• The bias conditions of the MOSFET are
somewhat unusual

• Now VGS < VT and the FET is officially off

» except that a small “sub-threshold” current can flow

» the FET is in inversion, but not the strong inversion
required for above threshold operation

• In weak inversion, current flow is dominated by
the diffusion of minority carriers (e- here)

» where n(0) and n(L) are the electron concentrations at
the source and drain, respectively, A is the area for
conduction, and L is the channel length

» Jdrift ∝ n, but Jdiff ∝ dn/dy, which can be large even for
low n

iDS = −qADn
dn
dy

= qADn
n 0( ) − n L( )

L

VDD

VDD - ∆V

VDD

iDS
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• The electron concentrations are

» where ψs is the surface potential, given by
[(Ei)bulk–(Ei)interface]/q

• At the surface of the semiconductor, the electric
field is

• In the equation above, the area for current flow,
A, equals the width of the FET x channel
thickness, tchan

» tchan is defined by the point at which the electron
concentration falls to 1/e of its value at the surface

» i.e. where ψs is decreased by kT/q

•  This occurs at tchan = kT/qEs

Es = −
Qdepletion

εSi
=

qNAWdepl

εSi

=
qNA

εSi

2εSiψ s

qNA

=
2qNAψs

εSi

n 0( ) = np0 exp
qψ s
kT

 
 

 
 

n L( ) = np 0 exp
qψ s − qVDS

kT
 
 

 
 
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• By substitution, and without doing much
simplification, we get

• Now, if VDS > 3kT/q (≈ 75mV), the last term in the
above equation ≈ 1

» and the exp(ψs) term dominates, so iDS = const. x
exp(qψs/kT)

• The surface potential, ψs, is given by (VGS -
constant terms)

» and in our circuit, VGS = VDS

» so we find iDS = i0 exp(qVDS/kT)

» where the i0 incorporates all the constant terms

• Finally, by rearranging, we obtain

• So as the illumination (and hence iphoto)
increases linearly

» the output voltage decreases logarithmically

iDS = Dn
W
L

 
 

 
 

ni
2

NA

 
  

 
  

kT
2qNAψ s

εSi

e

qψ s

kT 1 − e
−

qVDS

kT
 

 
  

 

 
  

VS = Vout = VD − kT
q

ln
iDS

i0

 
  

 
  = VD − kT

q
ln

iphoto

i0

 
  

 
  
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IMEC Log APS

• Logarithmic pixels have been promoted in
particular by the Inter-University
Microelectronics Centre (IMEC) in Belgium

» in the introduction, we saw pictures taken by an IMEC
camera in space

• IMEC is one of the leading APS laboratories and
have made innovative devices such as

» a “circular” foveated camera

» a 2048 x 2048 array

» a “time-to-crash” sensor

• Below is a typical output characteristic for one
of the IMEC logarithmic sensors
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Advantages of Log APS

• The much-sought-after advantage of the log
compression is that the sensor measures
illumination over a range of > 5 orders of
magnitude

» the dynamic range is ~100,000:1 (100dB)

» i.e. an order of magnitude more than ordinary APS

» remember that an office scene may have a range of
illumination of 106

• In addition, the log pixels do not need a reset
line

» so the operation is simpler

» and the fill factor is higher

• Because they use no integration time, the pixel
can be read out at any time as well as in any
sequence

» so they are truly randomly accessible

• So why doesn’t everyone use them?
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Disadvantages of Log APS
• While the dynamic range is large, the log pixels

suffer from several serious drawbacks arising
from the sub-threshold operation of the FET

• In the iDS expression is the term in exp(qψs/kT)

» in ψs are factors such as the threshold and flatband
voltages, which depends on the interface conditions,
and the oxide thickness, as well as the gate voltage

» therefore the output characteristics are sensitive to
such variations at a similar level to the signal

• The kT/q term leads to a significant temperature
dependence of the output

» about 8mV/°C, according to IMEC

» this could be a problem for large arrays where
significant temperature gradients are possible

• But the main difficulties arise because of the low
swing of the output signal

» only about 0.15V for 5 orders change in illumination

• For example, FET threshold voltages can have a
variation of ± 5 - 10%

» i.e. about 0.1V

» comparable with the recorded signal levels
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• These variations appear as fixed pattern noise

» and are so severe for log pixels that some subtraction
of stored “background” signals is essential

» and owing to the continuous output, a correlated
double sampling approach (see later) does not work
and a whole array’s worth of reference values must be
stored somewhere

• Moreover, the small signals make the sensors
susceptible to other noise sources

» a signal-to-noise ratio of 45dB (~180:1) is typical

» an integrating photodiode pixel may get 55-60dB
(1000:1)

• All of this means that a fully integrated camera
system using the log pixels is hard to implement

• The remaining issue with the logarithmic pixels
is their speed at low light levels

» since the only way of charging/discharging the
sensing node is by means of the photocurrent

» which can take a long time at low iphoto

• Say Cd = 2pF, iphoto = 10pA, and ∆V = 0.1V

» so ∆Q = Cd∆V = 2.10-12 x 0.1 = 10-13 C

» at iphoto = 10-11 C/s, it takes ~10ms per pixel to remove
the charge (i.e. 100 pixels/s maximum readout rate)
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Photogate APS

• Photogate Active Pixel Sensors were developed
in the early 1990s by workers at the Jet
Propulsion Laboratory (JPL), part of NASA

• The design of photogates owes a lot to CCD
techniques

» indeed, the photogate looks just like the final stage of
a CCD register

• The structure and operation are more complex
than for the photodiodes, but they offered
several advantages:

» not previously patented!

» (now patented by Eric Fossum of JPL)

» allows improved noise suppression (see later)

» and a greater Q → V conversion efficiency, due to its
separate output node

• The main disadvantage is that their quantum
efficiency is reduced by the use of an overlying
poly-Si gate

» the advantage of conversion efficiency is almost
exactly offset by the reduced QE
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• The schematic of the photogate pixel is as
follows

• The photogate (PG) is biased positively, thereby
creating a potential well in the deep-depleted
substrate

» thereby providing storage for the photo-generated
charge

• A transmission gate (TX) is dc biased during
integration and acts like a surface-channel CCD

» when the PG is pulsed to 0V, charge is transferred
under the TX gate to the floating diffusion output node

» ideally, the TX gate should overlap the PG to ensure
effective charge transfer (i.e. a double-poly process)

Operation of Photogate

VDD

PG TX
RST

FD

RS

p-sub
n+

VDD

column
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• The floating diffusion (FD) acts as the charge-
voltage conversion node

» and the signal is read out using the conventional
source-follower circuit

» a typical capacitance is 10fF, giving a conversion
efficiency of 10–20 µV/e-

• This floating diffusion is reset (RST) by the
neighbouring reset FET

• The added complexity of the pixel reduces the
minimum dimensions to ~20 times the process
feature size

» so 10µm for a 0.5µm process

» with a fill factor that is somewhat lower than that for a
photodiode

• Because of the overlying poly-Si gate, the
quantum efficiency is lower than a photodiode,
especially at the blue end of the spectrum

» typically the peak value ~20%

» compared with 35-40% for photodiode

• A typical operating sequence for the photogate
pixel is described below
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1.  Signal Integration

• TX and RST are biased lower than PG to provide
for some lateral antiblooming control

» both from PG to FD

» and from FD to VDD

• This ensures that any charge spilling over from
a full well is not allowed to flow into adjacent
pixels

5V
PG

2.5V
TX

2.5V
RST

FD
5V
VDD
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• RST is pulsed to 5V, in order to reset the FD to
~3.5V

• The final reset voltage is VT lower than VDD

• FD is reset immediately before the signal
readout because this allows improved noise
reduction

5V
PG

2.5V
TX

5V
RST

FD
5V
VDD

2.  Reset
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3.  Charge Transfer

• Now, PG is pulsed to 0V to transfer the charge
via TX onto the FD

• Calculated full well capacities are on the order
of 106 e-

» although this, of course, depends on the gate area

» but the realisable value depends on the output
circuitry, such as the transistor biasing

• The signal charge is added to any charge
remaining after the reset operation

0V
PG

2.5V
TX

2.5V
RST

FD
5V
VDD
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Single-poly Photogate

• While double-poly is a feature of many analog
CMOS technologies, its use does restrict the
generality of the design

• However, the need for overlapping gates can be
removed by adding an intermediate “bridging”
diffusion

• Save for the possible introduction of some
image lag, the use of this extra diffusion has
little affect on the performance of the pixel

VDD

PG TX
RST

FD

RS

p-subn+

VDD

column
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Pinned Photodiode

• While the pinned photodiode is not strictly
related to the photogate, it bears some similarity
in operating principle

» and was originally developed with CCDs in mind

• This structure is intended to give an improved
quantum efficiency in the blue region of the
spectrum

» and a lower dark current

• The device uses additional implantation steps to
the standard CMOS process to optimise the
performance of the photodetector

» and has been commercialised by Eastman-Kodak and
Motorola under the name of ImageMOS™

» and patented

» it is this kind of “tweaking” of the standard CMOS
process that Wong believes will become the norm for
integrated image sensors

• Pinned photodiodes were first proposed for
CCD sensors in the early 1980s and applied to a
combined CMOS/CCD structure in 1995 in a
JPL/Kodak collaboration
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Structure of Pinned PD

• The pinned photodiode is just like a regular
photodiode

» except for an additional p+ surface implant

• The p+ implant acts rather like a self-biased,
internal photogate

• Doping levels and implant depths must be
carefully controlled

» to deplete the n-region fully

» to ensure effective charge transfer from the diode to
the floating diffusion

• The name “pinned diode” arises because the p+

implant pins the potential at the surface to that
of the substrate

TX RST

RS

VDD

p-subn+

p+
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• So the potential, as a function of depth, looks
like

• The operation of the pixel is similar to that of the
photogate

» the FD is reset

» TX is used to transfer the signal charge onto the FD

» the diode itself is reset through RST and TX

• The ImageMOS™ process is based on a 3.3V
0.6µm CMOS technology

» the output voltage swing at the output is ~650mV, and
is the limiting factor on the dynamic range

log (depth)

potential

0

edge of p+

region
(< 0.1µm)

edge of n
region

(~0.5µm)

empty well

full well

surface
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• Part of the purpose for using pinned diodes is to
increase the pixel responsivity at short
wavelengths

• This is mainly as a result of a reduced surface
recombination of photo-generated e-h pairs

» arising from the doping profile a short distance
beneath the surface

» which creates a field favourable for e-h pair separation

Spectral Response
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Dark Current

• Dark current in the depletion region of a
conventional p-n junction is dependent on the
volume of material in which thermally generated
e-h pairs can be collected

• So the width of the depletion region is important

» as determined by np0 and pn0, the minority carrier
concentrations

» which are in turn affected by the doping
concentrations

» so the depletion region is smaller for higher doping

• And the rate and distance of the diffusion of
minority carriers

» which also decrease for higher doping

• In general, however, the same volume must also
be maximised to achieve the efficient collection
of photo-generated charge

• Although geometrical effects, perimeters etc.
also influence Jdark

Jdark =
qDppn 0

Lp
+

qDnnp 0

Ln
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• But if we can tailor the sensor such that the
depletion region is at the correct depth for
efficient optical absorption

» the depletion region does not have to be so large

» and the dark current can be reduced

• For the ImageMOS™, the dark current is better
than for a regular photodiode

» by a factor of ≥ 2

• The profile of the p+ implant right at the surface
also reduces the collection of dark current
generated at the surface states at the Si-SiO2
interface

• Fill factor is reduced by the transmission gate,
but this also provides some anti-blooming
function

• It is not yet clear how “revolutionary” the use of
pinned diodes will be for CMOS image sensors

» technology is less widespread

» more complex pixels
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Summary
• This has covered all of the common CMOS

compatible photosensors

• In the search for the perfect performance, other
sensors have been proposed

» such as lateral BJTs, fabricated using CMOS
technology

» charge injection devices (CID)

» charge modulation device (CMD) which have
achieved success for HDTV cameras

• But the photodiode and charge-transfer based
pixels are by far the most widespread

» the “specialised” designs are frequently promoted by
single companies

» either for proprietary reasons or for specialised
applications

• It is likely that new designs will proliferate as the
rigid link to standard CMOS is severed

» either by choice for performance enhancements

» or forced by the continued scaling of the CMOS
process
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