Part II: Fabrication Technology and Pixel Design

Introduction

- In this section we will take the ideas of optical detection and examine how they can be applied to practical optical detectors
- We also need to know how the fabrication technology influences the performance of the sensors
- So we will first look briefly at CMOS technology, and then dwell longer on how the future development of CMOS will affect image sensors
- In the second half of the section, we will discuss the four basic types of CMOS pixels
 - » passive pixel photodiode
 - » linear active pixel photodiode
 - » logarithmic active photodiode
 - » photogate active pixel

Fabrication of CMOS Imagers

- The first part of the idea of using "standard" CMOS technology for imagers is to use a widespread, accessible process
 - » with well-developed design tools
 - » standard design libraries
 - » fast turn-around time

• The second part is that fully integrated camera systems can be built on a single chip, featuring

- » low power consumption (low voltage operation)
- » small, robust, and inexpensive
- » integrated clocking and addressing
- » focal-plane image processing
- » A-D conversion, signal encoding
- We will find that, while the second part is becoming true, there may be some problems with the first part
- Here, we examine the trends of CMOS technology and their implications for fabricating imagers
 - » we will also compare briefly CCD and CMOS technologies, and consider the hybrid CCD/CMOS

Features of Sub-micron CMOS Technology

- In the following few pages, we will examine the evolution of CMOS technology
- A simplified cross section through a sub-micron CMOS process is shown below to illustrate the relevant features

Effects of Technology Scaling

- One of the "selling points" for the surge of interest in CMOS imagers has been the attraction of using standard processing to
 - » reduce development costs
 - » reduce fabrication costs
 - » reduce dependence on a single supplier
- However, the question was naturally asked about how the rapid development of these "standard" processes would influence the imager performance
- The following pages are based on the 1994 Semiconductor Industry Association roadmap
 - » the updated 1997 version applies even more so!
- Each aspect of scaling will be considered individually, along with the potential impact on CMOS imagers
 - » the seminal work on the subject is by Wong, from IBM (see references)

Feature Size

- A new generation of CMOS devices is developed every three years, or less
 - » device dimensions are less than 0.7 times those of the previous generation
 - » 0.25µm technology is in production

• This is driven by the desire for

- - » improved fill factor
 - » improved conversion efficiencies

Lower V_{DD}

- » because electric fields cannot be too high
- » e.g. hot carrier effects & tunneling
- Partly for lower power consumption (P V

V_{DD}²)

- The curve below clearly shows the trend towards V_{DD} $\,$ 1V

Impact on CMOS imagers

- » reduced analog voltage swing, V_{DD} V_{T}
- » hence, reduced dynamic range
- » analog signal processing becomes difficult

Brews' Rule

- When the channel lengths of MOSFETs become too short, so-called short-channel effects become apparent
- The main effect of this scaling is to reduce the charge under the gate
 - » which ideally is a function just of the gate potential
 - » but changes due to the depletion width at the drain, and hence with V_{DS}

 A rule of thumb for determining the minimum acceptable device length has been developed by Brews

$$\mathbf{L}_{\min} = 0.4 \left[\mathbf{x}_{j} \mathbf{t}_{ox} \left(\mathbf{W}_{d} + \mathbf{W}_{s} \right)^{2} \right]^{1/3}$$

- Where
 - » x_i is the junction depth in μ m
 - » t_{ox} is the oxide thickness in Å
 - » and W_{s} and W_{d} are the source and drain depletion widths in $\mu m,$ respectively

Impact of short channel effects on CMOS imagers

- » increased off-current of MOSFETs (increases exponentially as V_T is reduced) is a potential issue for some architectures
- » p-n junction tunnelling current adds to the pixel dark current arising from thermal generation

Substrate Doping

- W_{S,D} are dependent on the substrate doping of the wafer
 - » this is increasing over the years in order to minimise short-channel effects

- Impact on CMOS imagers, due to associated reduction in minority carrier diffusion length, L_n
 - » good reduces crosstalk between pixels
 - » bad reduces effective volume for photo-charge collection

Oxide Thickness

- As the supply voltage decreases, so too must the threshold voltage
 - » although this is also affected by substrate doping
- V_T is dependent on 1/C_{ox}, and therefore t_{ox} must be reduced, since C_{ox} = s_i/t_{ox}

Impact on CMOS imagers

- » reduced voltage swing, as before, since V_{DD} scales faster than V_T (see later for plot of trend in V_{DD} V_T)
- gate tunnelling current potentially important for some MOS capacitor devices

Source/Drain Junction Depth

• Source and drain junction depths are important in determining the influence of the drain depletion region on the MOSFET characteristics

- More lightly doped n- and p-wells may be a few times deeper than the junction depths
 - » so, ~ 0.5µm at the moment

Impact on CMOS imagers

- » reduces the effective volume for collecting photocharge, hence reduced quantum efficiencies
- » possible increase in surface effects

New materials

- One major change that has been made in the materially-conservative semiconductor industry is the introduction of silicide layers
 - » to reduce contact and sheet resistances of source/drain regions and gates, respectively
 - » usually WSi₂, TiSi₂, CoSi₂
- This is important for imagers because silicides are relatively opaque to visible light
- At the 0.5µm technology level, silicide layers can be optionally masked out
 - » but it is not clear whether this will continue to be the case in future technologies
- Mendis has reported that a pixel's sensitivity is reduced to 20% of its former value in the presence of the silicide layer
 - » which is consistent with the silicide transmission spectrum

Conclusions

- Wong's conclusions may be summarised as follows
 - » full integration offered by CMOS devices is still advantageous
 - » sub-0.5µm technology will not be optimal for imaging without some process changes
 - » other costs (packaging, testing) are more important than the extra costs incurred by using a slightly nonstandard process
- While Wong's conclusions may be technically correct, it is still not clear what influence technology scaling will actually have
 - » cheaper and wider access to older technologies may remain more attractive
 - » process tweaks do not just raise costs, but also reduce second sourcing options and portability
 - » even if advanced technologies are used, the system design may mitigate many disadvantages without the need for tweaking
- In the end, the balance depends on the application
 - » and it is likely that a continuum of techniques will develop between pure CCD and pure CMOS

Comparison of CMOS & CCD Technologies

- We can write down broad requirements for each technology
- CCD
 - » gate oxide thickness 800Å
 - » p-well depth > 2.5µm
 - » channel stop depth 1µm
 - » channel depth 0.8µm
 - » typical operating voltage 10V
 - » several poly-Si and inter-poly dielectrics needed

CMOS

- » gate oxide thickness 50Å
- » well depths ~ 0.5µm
- » source/drain implants 0.1µm
- » operating voltage 3.3V
- » digital process has 1 poly, analog has 2 polys

• A comparison of these figures makes clear why it is difficult to integrate the two technologies

- » essentially, a full-featured combination would require almost all the stages from both processes
- » which means maybe > 30 masks

Combined CMOS/CCD

- To date, the reduced yield and increased costs has not made a combined CMOS/CCD process viable
- The combined process is neither standard CMOS nor standard CCD, and so requires extensive development expenses
 - » and the frequent result is that neither part will work particularly well
- Several processes have been reported which claim to preserve the quality of each technology
- Suni Imaging Microsystems are advertising a hybrid process which has
 - » only "3 or 4" more masks than standard CMOS
 - » 5V operation
 - » and works by separating out CCD and CMOS regions on the chip
 - » CCDs can run satisfactorily at 5V provided their area is enough to ensure a reasonable full well capacity
 - » for high resolution small pixel area higher voltages are generally required to achieve the full well, so some compromise must have been made here

The alternate approach is to start with a CCD process and add in extra process modules

- » e.g. that reported by Eastman-Kodak
- » extra CMOS steps added

- Such a process required 4 additional masks and 3 extra implants
 - » a BiCMOS process is also demonstrated, with 3 additional masks and 3 implants for a NPN transistor
- Despite the demonstrated feasibility of CMOS/CCD hybrids, the idea has not yet taken off
 - » possibly because few places have access to both sets of fabrication facilities and design experience

CMOS Photodiode Pixels

- We have already seen something about how we might build pixels using CMOS technology
- Now we will look in more detail at the different designs of pixels that have been fabricated using CMOS
- Although there is one dominant sensor type the photodiode – there are several possible implementations
- And there are additional topologies which draw on CCD ideas
- Here, we will not dwell greatly on either the rest of the in-pixel circuitry or on the support circuits
 - » these will be the topic of a future section
- In passing, we will mention some of the sources of noise in the imaging arrays
 - » these too will be drawn together later

"Photon Flux Integrating Mode"

- The operation of a photodiode in the "charge integration" mode discussed earlier is not recent
 - » it was proposed in 1967 by Gene Weckler
- In the original proposal, the circuit was presented much as we did before

- » although Weckler also demonstrated that a MOSFET could serve adequately as the switch
- We can follow a simple analysis for the output voltage of the diode as a function of time, after the diode has been reset
- Here, we note that the current in the capacitor must be equal and opposite to the photocurrent
 - » because the diode is isolated
 - » and we will ignore the dark current

Hence

$$\mathbf{C}(\mathbf{V})\frac{\mathbf{d}\mathbf{V}(\mathbf{t})}{\mathbf{d}\mathbf{t}} = -\mathbf{i}_{\text{photo}}$$

• For a n⁺p diode, the capacitance is

$$C_{j}(V) = \frac{A}{2} \frac{2q_{Si}N_{A}}{V(t)} \frac{\frac{1}{2}}{2}$$

- $\,$ where A is the diode area, and N_A is the acceptor concentration in the substrate
- So we find

$$\frac{A}{2} \left(2q_{Si} N_A \right)^{1/2} \left[2\sqrt{V} \right]_{V_{reset} + V_0}^{V(t) + V_0} = -i_{photo} t$$

- » where V_0 is the diode built in voltage, and V_{reset} is the reset reverse bias
- And thus

$$\mathbf{V}(\mathbf{t}) = \mathbf{V}_{\text{reset}}^{1/2} - \frac{\mathbf{i}_{\text{photo}} \mathbf{t}}{\mathbf{A} \left(2\mathbf{q}_{\text{Si}} \mathbf{N}_{\text{A}} \right)^{1/2}}$$

• While this expression includes a term in A, the diode area, this cancels out because

i_{photo} I₀A

» where I_0 is the incident flux of photons

So the collected voltage is independent of the diode area for a given photon flux

» if we think of V = Q(A)/C(A), then both Q and C are proportional to area so the voltage is unchanged

• If we calculate V(t) as a function of time for

» A = $(10\mu m)^2$, V_{reset} = 5V, N_A = 10^{16} cm⁻³, and i_{photo} = 1pA (small), we find the following curve

• The voltage drop is almost linear for short times

- » which is what we want!
- » remember this does not include dark current

Fill Factor

- So why are we worried about the fraction of the pixel that is light-sensitive the "fill factor" if the area cancels out?
- This is because the foregoing analysis is only part of the story
 - » capacitance does not come just from the pixel area
 - » and we must consider sources of capacitance external to the pixel
 - » and there are other unwanted sources of charge
- Firstly, capacitance arises both from the "floor" (the area capacitance) of the implanted region and from the "wall" (the periphery)

 For a 0.5µm process, the capacitances at zero bias are

»
$$C_{ja} = 4.7 \times 10^{-4} \text{ F/m}^2$$

- » $C_{ip} = 3.2 \times 10^{-10} \text{ F/m}$
- For a (30µm)² pixel, the periphery represents
 0.08 of the total capacitance
 - » but this rises to 0.3 for a $(7\mu m)^2$ pixel
- Alternatively, the area has scaled by 0.05 from (30µm)² to (7µm)²
 - » but the capacitance has only scaled by 0.07
- Thus the smaller pixel generates less voltage than does the larger one
 - » because i_{photo}/C_{total} has scaled by 0.05/0.07 = 0.7
- Secondly, the photodiode is connected to the outside world
 - » either to the column bus or to an in-pixel voltage buffer

• Hence, there is a fixed capacitance

» i.e. not dependent on the pixel area

» so
$$V_{out} = Q(A)/[C_{pixel}(A) + C_{node}]$$

- » which falls as A decreases
- Thirdly, there will be sources of unwanted charge that are non-linearly dependent on pixel area
 - » e.g. dark current comes from both area and periphery
 - » and/or "reset" noise
 - » so $V_{out} = [Q(A) + Q_{noise}]/C_{pixel}(A)$
 - » therefore as A falls, the signal-to-noise ratio falls
- Fill factor is particularly important for CCDs because the sensing capacitance is external to the pixel
 - » so the more charge you collect during the integration time – i.e. the larger the photosensitive area – the better

• A larger photosensitive area also gives a larger full well capacity

- » which should give a larger dynamic range
- » provided the limiting factor on the minimum resolvable signal does not depend on pixel area
- » usually, it is later elements that limit the dynamic range

Passive Pixel Sensors (PPS)

• Weckler's method for reading out the integrated charge was to measure the voltage across a load resistor required to reset the pixel

- » switch, S, is closed to reset the pixel to a reverse bias of V
- » for a period of t_{int}, S is opened, allowing the photodiode to discharge at a rate approximately proportional to the incident illumination
- when S is closed again, the total charge that must flow through R to reset the pixel is equal to that "lost" during the integration period
- » and the signal across R is a measure of the voltage on the photodiode after the integration time

Weckler also reported the first picture from a photodiode array (a 200-element linear array)

- » he named it a <u>reticon</u> and founded the company of the same name (now EG&G Reticon)
- » and he holds the first patent on photodiode arrays

 To integrate this into an array, the suggestion was to use a single load resistance at the bottom of a column of pixels

- One of the disadvantages of this readout technique (especially for large arrays) was the time required to reset the diode fully through the resistor
 - » incomplete reset reduces the dynamic range of the sensor
- Hence, readout via a charge amplifier was suggested

Charge Amplifier

- An alternative to the resistor readout scheme is to supply and measure the reset charge using a charge amplifier
- As proposed, for example by Noble (1968), there would be one charge amplifier per array

- In the ideal case, the virtual earth of the amplifier would supply the current needed to recharge the diode
 - » once the appropriate addressing transistors are turned on
- This current would be integrated and converted to a voltage

» $V_{out} = v_i \cdot C_d / C_f$

- This charge is stored on C_f after the column or row transistors are turned off
 - » and the amplifier and the whole line must be reset between pixels by shorting $C_{\rm f}$
- While this approach is simple in principle, it is almost useless in practice
 - » owing to parasitic capacitances, C_L, of all the data lines, since all diodes are connected to the one input

- This is bad because C_d can charge from C_L instead of C_f – charge is shared between C_L & C_f
 - $\, \ast \,$ and so C_f will not record the full charge required to reset the diode
- The effective value of C_f at the amplifier input is
 - » $C'_{f} = (1 + A)C_{f}$ (from Miller's theorem)
 - » and only $C'_{f'}(C'_{f} + C_{L})$ of the reset charge comes from the charge amplifier
 - » hence the value of V_{out} can be significantly reduced

Modern Implementation

- Many research groups and companies have used PPS
 - » we will consider the pros and cons below
- The modern implementation reduces the capacitance problem by
 - » using one charge amplifier for each column in the array
- And use just one addressing MOSFET

• When the address transistor is switched on

- » a current flows via the resistance and capacitance of the column bus because of V $_{\rm ref}$ V $_{\rm diode}$
- » this total charge required for this reset is integrated by the capacitor C_f , and output as a voltage
- » so the final bus and diode voltages are returned to V_{ref} by the charge amplifier
- » the address FET is turned off, and the voltage across $C_{\rm f}$ is removed by the reset FET

• The column bus R & C is still important because they affect

- » the speed at which the pixel can be read out
- » and the noise associated with the readout (see later)

Thus the use of PPS these days is limited to small array sizes and slow readout

- » typically the "quality" is about 1/10 that of a CCD detector of similar dimensions
- » and PPS are generally out of fashion

Two problems arise from the use of one charge amplifier per column

- » differences between amplifiers
- » reset speed is limited by the maximum size of FETs that can fit into the limited space available in the width of a column

Typical Values

- A typical 0.5µm process has a metal-1 to substrate capacitance of 50aF/µm²
 - » leading to the capacitance of a 3µm x 10mm bus of not less than 1.5pF
 - » and there is extra capacitance due to the devices attached to the bus, say 2pF
- Recall that the (30µm)² pixel capacitance is about 0.15pF
 - » so about 10% of the bus capacitance
- A typical value for C_f is 0.2pF
 - » which gives an effective value of C'_f 20pF at the input to the charge amplifier
- This means that only 90% of the charge required to reset the diode comes from the integrating capacitor
 - » this represents a significant loss of sensitivity

Advantages of PPS

- Despite the drawbacks in the readout technique of PPS, they have some advantages
- The main advantage is that the fill factor is maximised
 - » because there is only one transistor
- This allows the pixels to be smaller for a given technology
 - » which keeps die sizes smaller
 - » and devices cheaper
- It is also argued that the simplicity also enables a higher yield to be achieved
 - » which would also keep costs down
 - » but this is less important in these days of high quality fabrication
- In common with other photodiode-based sensors, the quantum efficiency is high
 - » because there are as few layers as possible overlaying the device

Hitachi R&D Effort

- One of the few companies to carry out serious R&D into CMOS image sensors in the years between ~1970 and ~1990 was Hitachi Ltd.
 - » seeking alternatives for colour hand-held video cameras
- In a series of papers, Hitachi researchers reported essentially complete single-chip colour cameras
 - » at relatively low 484 x 384 resolutions
 - » but the fabrication technology was 3µm NMOS
 - » this type of integration has only been achieved in commercial products in the last few years
- These Hitachi sensors were still the passive pixel arrangement
- Hitachi abandoned their efforts in the late 1980s
 - » but they hold several vital patents for active pixels and noise reduction circuitry
 - » these patents are still in force today, so other companies are having to take these into account

Active Pixel Sensors (APS)

- In the same 1968 paper, Noble shows the first use of a MOSFET buffer amplifier in the pixel
 - » this has become known as an active pixel sensor (APS), which Noble also considered to be superior to the PPS
 - » and an improved study and analysis was reported by Chamberlain shortly afterwards
- In these early devices, variations between the individual diodes and MOSFETs were significant
 - » variations in diode dark currents and MOSFET threshold voltages
 - » variations in leakage, capacitance etc. in circuitry
- Overall signal-to-noise ratios were only about 1
- It was these variations, due to the immature fabrication technology, that allowed CCDs to gain the dominance that still exists
 - » CCDs had a smaller fixed pattern noise
 - » and a smaller pixel size because there were no (large) transistors in the pixel
- Relatively little APS research was carried out for another 10 years, and it took 20 years for major interest to be renewed

Modern APS

- With improvements in the CMOS fabrication process brought about by the computer industry, CMOS imagers have again become viable
 - » these improvements have reduced device-to-device variations to manageable levels
 - » while they are not yet as good as CCDs, the other advantages of CMOS imagers frequently make the performance penalty worthwhile
- The basic form of APS employs the familiar photodiode, and a readout circuit of three transistors

• Here, the idea is that the photodiode capacitance just includes

- » the diode itself
- » the source of the reset transistor
- » and the gate of the MOSFET, M
- M acts as a voltage buffer to drive the output independently of the diode

• There is a single load transistor for each column

- » this minimises pixel area
- » minimises pixel-to-pixel variations
- » and works because only one row of the array is activated at any time

• A typical pixel layout would look like

Reset

- Fabrication usually takes place into a p-type substrate
 - » and the n⁺ source/drain diffusions of the NMOS transistors are used for the photodiode
 - » n-type device wells are needed for PMOS transistors
 - » and there needs to be space both between the devices and the well, and between the well and other things

- Hence NMOS transistors are most spaceefficient because they do not need a separate device well
 - » which takes up valuable pixel area
 - » and NMOS reset transistors are currently almost universal

• However, this has an important drawback

- » an NMOS transistor with V_{DD} on both G and D can only get to a source voltage of V_{DD} V_{T}
- » before it switches off, because $V_{GS} < V_T$
- Therefore, the photodiode can only be reset to a voltage of (V_{DD} V_T)
 - » this limits the dynamic range of the sensor
 - » and introduces a major source of non-uniformity
 - » the trend with device scaling is shown below

- Maybe it is time to re-assess the use of PMOS reset transistors
 - » since device scaling reduces the impact of including the n-well

Readout

 If we consider the readout circuit for an individual pixel

 Provided that V_{out} > V_{bias} - V_{TL}, L is in saturation and can be idealised by a current source, i

»
$$V_{bias}$$
 1.5V, so V_{bias} - V_{TL} 0.5V

- » M is always in saturation, if $V_{diode} V_{out} > V_{TM}$ and ignoring any body effect
- For transistor M

$$\begin{split} &i = K \Big[V_{GS} - V_{TM} \Big]^2 = K \Big[V_{diode} - V_{out} - V_{TM} \Big]^2 \\ & \text{where } K = & \frac{1}{2} \mu C_{ox} \quad \frac{W}{L} \\ & \text{Rearranging gives} \end{split}$$

 $V_{out} = V_{diode} - V_{TM} + \sqrt{\frac{i}{K}}$

- The maximum possible V_{out} = V_{diode} V_{TM}
 - » or, including the reset voltage, $V_{out} < V_{DD}$ ($V_{TM} + V_{TR}$)
 - » but this is only if i = 0
- But otherwise, the output is linearly proportional to the diode voltage
- So the maximum practical output swing is

- Hence, the bias voltage should be minimised, while still keeping the load , L, turned on
- From the above, we can now see that the row select transistor does not add any further voltage drop

» even when V_{out} is at its maximum, V_{GS} for the row select is still greater than V_T so there is no further loss of signal

Typical Figures

- For photodiode APS, the typical fill factor is about 20 35%
 - » taking into account the photosensitive area as a fraction of the total pixel area
 - » pixel area = (total sensor area)/(n x m pixels)
- The real pixel size is called the "pixel pitch"
 - » and is the (array width) / (n columns) or (array height)/(m rows)
 - » which are not necessarily the same
- Typically the pixel pitch ~ 15 x min. feature size
- The peak quantum efficiency (QE) is ~40% at green wavelengths
- Conversion gain ~ 3µV/e⁻
 - » which is quite low compared to CCDs and photogate
- Saturation signal ~ 300,000 e⁻
- Dynamic range ~ 6000:1 (75dB)
- The maximum commercial array size is currently about 1024 x 1024
 - » although larger experimental devices have been reported

Log. Photodiode APS

- An interesting variant on the basic 3-transistor APS circuit allows for a logarithmic response from the sensor
- If the dynamic range is limited by voltage swings in the circuit, and not by the full-well of the diode
 - » then logarithmic encoding of the photo-signal allows for a much wider dynamic range
 - » i.e. same voltage swing for a wider range of illumination
- This can be achieved very simply

- Because i_{photo} is very small, the apparent resistance of the photodiode is large
 - » and the voltage at A is only slightly lower than V_{DD}
 - » in fact, just low enough so that $i_{DS} = i_{photo}$

MOSFET in Sub-threshold

 The bias conditions of the MOSFET are somewhat unusual

- Now $V_{GS} < V_T$ and the FET is officially off
 - » except that a small "sub-threshold" current can flow
 - » the FET is in inversion, but not the strong inversion required for above threshold operation
- In weak inversion, current flow is dominated by the diffusion of minority carriers (e⁻ here)

$$\mathbf{i}_{\mathrm{DS}} = -\mathbf{q} \mathbf{A} \mathbf{D}_{\mathbf{n}} \frac{\mathrm{d}\mathbf{n}}{\mathrm{d}\mathbf{y}} = \mathbf{q} \mathbf{A} \mathbf{D}_{\mathbf{n}} \frac{\mathbf{n}(\mathbf{0}) - \mathbf{n}(\mathbf{L})}{\mathbf{L}}$$

- » where n(0) and n(L) are the electron concentrations at the source and drain, respectively, A is the area for conduction, and L is the channel length
- » J_{drift} n, but J_{diff} dn/dy, which can be large even for low n

• The electron concentrations are

$$n(0) = n_{p0} \exp \frac{q_s}{kT}$$
$$n(L) = n_{p0} \exp \frac{q_s - qV_{DS}}{kT}$$

- » where $_{s}$ is the surface potential, given by $[(E_{i})_{bulk}-(E_{i})_{interface}]/q$
- At the surface of the semiconductor, the electric field is

$$E_{s} = -\frac{Q_{depletion}}{Si} = \frac{qN_{A}W_{depl}}{Si}$$
$$= \frac{qN_{A}}{Si}\sqrt{\frac{2 Si S}{qN_{A}}}$$
$$= \sqrt{\frac{2qN_{A}S}{Si}}$$

- In the equation above, the area for current flow, A, equals the width of the FET x channel thickness, t_{chan}
 - » t_{chan} is defined by the point at which the electron concentration falls to 1/e of its value at the surface
 - » i.e. where s is decreased by kT/q
- This occurs at t_{chan} = kT/qE_s

 By substitution, and without doing much simplification, we get

$$i_{DS} = D_n \frac{W}{L} \frac{n_i^2}{N_A} \frac{kT}{\sqrt{\frac{2qN_A - s}{Si}}} e^{\frac{q}{kT}} 1 - e^{\frac{-qV_{DS}}{kT}}$$

- Now, if V_{DS} > 3kT/q (75mV), the last term in the above equation 1
 - » and the exp(_s) term dominates, so i_{DS} = const. x exp(q _s/kT)
- The surface potential, _s, is given by (V_{GS} constant terms)
 - » and in our circuit, $V_{GS} = V_{DS}$
 - » so we find $i_{DS} = i_0 \exp(qV_{DS}/kT)$
 - » where the i₀ incorporates all the constant terms
- Finally, by rearranging, we obtain

$$V_S = V_{out} = V_D - \frac{kT}{q} \ln \frac{i_{DS}}{i_0} = V_D - \frac{kT}{q} \ln \frac{i_{photo}}{i_0}$$

- So as the illumination (and hence i_{photo}) increases <u>linearly</u>
 - » the output voltage decreases logarithmically

IMEC Log APS

- Logarithmic pixels have been promoted in particular by the Inter-University Microelectronics Centre (IMEC) in Belgium
 - » in the introduction, we saw pictures taken by an IMEC camera in space
- IMEC is one of the leading APS laboratories and have made innovative devices such as
 - » a "circular" foveated camera
 - » a 2048 x 2048 array
 - » a "time-to-crash" sensor
- Below is a typical output characteristic for one of the IMEC logarithmic sensors

Advantages of Log APS

- The much-sought-after advantage of the log compression is that the sensor measures illumination over a range of <u>> 5 orders of</u> <u>magnitude</u>
 - » the dynamic range is ~100,000:1 (100dB)
 - » i.e. an order of magnitude more than ordinary APS
 - » remember that an office scene may have a range of illumination of 10⁶
- In addition, the log pixels do not need a reset line
 - » so the operation is simpler
 - » and the fill factor is higher
- Because they use <u>no integration time</u>, the pixel can be read out at any <u>time</u> as well as in any sequence
 - » so they are truly randomly accessible
- So why doesn't everyone use them?

Disadvantages of Log APS

- While the dynamic range is large, the log pixels suffer from several serious drawbacks arising from the sub-threshold operation of the FET
- In the i_{DS} expression is the term in exp(q s/kT)
 - » in s are factors such as the threshold and flatband voltages, which depends on the interface conditions, and the oxide thickness, as well as the gate voltage
 - » therefore the output characteristics are sensitive to such variations at a similar level to the signal

• The kT/q term leads to a significant temperature dependence of the output

- » about 8mV/°C, according to IMEC
- » this could be a problem for large arrays where significant temperature gradients are possible
- But the main difficulties arise because of the low swing of the output signal
 - » only about 0.15V for 5 orders change in illumination

• For example, FET threshold voltages can have a variation of ± 5 - 10%

- » i.e. about 0.1V
- » comparable with the recorded signal levels

• These variations appear as fixed pattern noise

- » and are so severe for log pixels that some subtraction of stored "background" signals is essential
- » and owing to the continuous output, a correlated double sampling approach (see later) does not work and a whole array's worth of reference values must be stored somewhere
- Moreover, the small signals make the sensors susceptible to other noise sources
 - » a signal-to-noise ratio of 45dB (~180:1) is typical
 - » an integrating photodiode pixel may get 55-60dB (1000:1)
- All of this means that a fully integrated camera system using the log pixels is hard to implement
- The remaining issue with the logarithmic pixels is their speed at low light levels
 - » since the only way of charging/discharging the sensing node is by means of the photocurrent
 - » which can take a long time at low i_{photo}
- Say $C_d = 2pF$, $i_{photo} = 10pA$, and V = 0.1V
 - » so $Q = C_d V = 2.10^{-12} \times 0.1 = 10^{-13} C$
 - » at i_{photo} = 10⁻¹¹ C/s, it takes ~10ms per pixel to remove the charge (i.e. 100 pixels/s maximum readout rate)

Photogate APS

- Photogate Active Pixel Sensors were developed in the early 1990s by workers at the Jet Propulsion Laboratory (JPL), part of NASA
- The design of photogates owes a lot to CCD techniques
 - » indeed, the photogate looks just like the final stage of a CCD register
- The structure and operation are more complex than for the photodiodes, but they offered several advantages:
 - » not previously patented!
 - » (now patented by Eric Fossum of JPL)
 - » allows improved noise suppression (see later)
 - » and a greater Q V conversion efficiency, due to its separate output node
- The main disadvantage is that their quantum efficiency is reduced by the use of an overlying poly-Si gate
 - » the advantage of conversion efficiency is almost exactly offset by the reduced QE

Operation of Photogate

The schematic of the photogate pixel is as follows

- The photogate (PG) is biased positively, thereby creating a potential well in the deep-depleted substrate
 - » thereby providing storage for the photo-generated charge
- A transmission gate (TX) is dc biased during integration and acts like a surface-channel CCD
 - » when the PG is pulsed to 0V, charge is transferred under the TX gate to the floating diffusion output node
 - » ideally, the TX gate should overlap the PG to ensure effective charge transfer (i.e. a double-poly process)

- The floating diffusion (FD) acts as the chargevoltage conversion node
 - » and the signal is read out using the conventional source-follower circuit
 - » a typical capacitance is 10fF, giving a conversion efficiency of 10–20 $\mu\text{V/e}^{-}$
- This floating diffusion is reset (RST) by the neighbouring reset FET
- The added complexity of the pixel reduces the minimum dimensions to ~20 times the process feature size
 - » so 10µm for a 0.5µm process
 - » with a fill factor that is somewhat lower than that for a photodiode
- Because of the overlying poly-Si gate, the quantum efficiency is lower than a photodiode, especially at the blue end of the spectrum
 - » typically the peak value ~20%
 - » compared with 35-40% for photodiode
- A typical operating sequence for the photogate pixel is described below

1. Signal Integration

- TX and RST are biased lower than PG to provide for some lateral antiblooming control
 - » both from PG to FD
 - » and from FD to $\rm V_{\rm DD}$
- This ensures that any charge spilling over from a full well is not allowed to flow into adjacent pixels

2. Reset

- RST is pulsed to 5V, in order to reset the FD to ~3.5V
- The final reset voltage is V_T lower than V_{DD}
- FD is reset immediately before the signal readout because this allows improved noise reduction

3. Charge Transfer

- Now, PG is pulsed to 0V to transfer the charge via TX onto the FD
- Calculated full well capacities are on the order of 10⁶ e⁻
 - » although this, of course, depends on the gate area
 - » but the realisable value depends on the output circuitry, such as the transistor biasing
- The signal charge is <u>added</u> to any charge remaining after the reset operation

Single-poly Photogate

- While double-poly is a feature of many analog CMOS technologies, its use does restrict the generality of the design
- However, the need for overlapping gates can be removed by adding an intermediate "bridging" diffusion

• Save for the possible introduction of some image lag, the use of this extra diffusion has little affect on the performance of the pixel

Pinned Photodiode

- While the pinned photodiode is not strictly related to the photogate, it bears some similarity in operating principle
 - » and was originally developed with CCDs in mind
- This structure is intended to give an improved quantum efficiency in the blue region of the spectrum
 - » and a lower dark current
- The device uses additional implantation steps to the standard CMOS process to optimise the performance of the photodetector
 - » and has been commercialised by Eastman-Kodak and Motorola under the name of ImageMOS[™]
 - » and patented
 - » it is this kind of "tweaking" of the standard CMOS process that Wong believes will become the norm for integrated image sensors
- Pinned photodiodes were first proposed for CCD sensors in the early 1980s and applied to a combined CMOS/CCD structure in 1995 in a JPL/Kodak collaboration

Structure of Pinned PD

• The pinned photodiode is just like a regular photodiode

» except for an additional p⁺ surface implant

- The p⁺ implant acts rather like a self-biased, internal photogate
- Doping levels and implant depths must be carefully controlled
 - » to deplete the n-region fully
 - » to ensure effective charge transfer from the diode to the floating diffusion
- The name "pinned diode" arises because the p⁺ implant pins the potential at the surface to that of the substrate

• The operation of the pixel is similar to that of the photogate

- » the FD is reset
- » TX is used to transfer the signal charge onto the FD
- » the diode itself is reset through RST and TX
- The ImageMOS[™] process is based on a 3.3V
 0.6µm CMOS technology
 - » the output voltage swing at the output is ~650mV, and is the limiting factor on the dynamic range

Spectral Response

- Part of the purpose for using pinned diodes is to increase the pixel responsivity at short wavelengths
- This is mainly as a result of a reduced surface recombination of photo-generated e-h pairs
 - » arising from the doping profile a short distance beneath the surface
 - » which creates a field favourable for e-h pair separation

Dark Current

 Dark current in the depletion region of a conventional p-n junction is dependent on the volume of material in which thermally generated e-h pairs can be collected

$$\mathbf{J}_{dark} = \frac{\mathbf{q}\mathbf{D}_{\mathbf{p}}\mathbf{p}_{\mathbf{n}0}}{\mathbf{L}_{\mathbf{p}}} + \frac{\mathbf{q}\mathbf{D}_{\mathbf{n}}\mathbf{n}_{\mathbf{p}0}}{\mathbf{L}_{\mathbf{n}}}$$

- So the width of the depletion region is important
 - » as determined by n_{p0} and p_{n0}, the minority carrier concentrations
 - » which are in turn affected by the doping concentrations
 - » so the depletion region is smaller for higher doping
- And the rate and distance of the diffusion of minority carriers
 - » which also decrease for higher doping
- In general, however, the same volume must also be maximised to achieve the efficient collection of photo-generated charge
- Although geometrical effects, perimeters etc. also influence J_{dark}

R.I. Hornsey, University of Waterloo

- But if we can tailor the sensor such that the depletion region is at the correct depth for efficient optical absorption
 - » the depletion region does not have to be so large
 - » and the dark current can be reduced
- For the ImageMOS[™], the dark current is better than for a regular photodiode
 - » by a factor of 2
- The profile of the p⁺ implant right at the surface also reduces the collection of dark current generated at the surface states at the Si-SiO₂ interface
- Fill factor is reduced by the transmission gate, but this also provides some anti-blooming function
- It is not yet clear how "revolutionary" the use of pinned diodes will be for CMOS image sensors
 - » technology is less widespread
 - » more complex pixels

Summary

- This has covered all of the common CMOS compatible photosensors
- In the search for the perfect performance, other sensors have been proposed
 - » such as lateral BJTs, fabricated using CMOS technology
 - » charge injection devices (CID)
 - » charge modulation device (CMD) which have achieved success for HDTV cameras
- But the photodiode and charge-transfer based pixels are by far the most widespread
 - » the "specialised" designs are frequently promoted by single companies
 - » either for proprietary reasons or for specialised applications
- It is likely that new designs will proliferate as the rigid link to standard CMOS is severed
 - » either by choice for performance enhancements
 - » or forced by the continued scaling of the CMOS process

References – Part II

- » E. Yang (1988), "OMicroelectronic Devices", McGraw-Hill
- » S. Campbell (1996), "The Science and Engineering of Microelectronic Fabrication", Oxford
- » Paul Suni, "Advanced design creates single-chip image systems", Laser Focus World April 1997, p.73
- » C. Matsumoto, "Startup develops CCD-CMOS hybrid", Electronic Engineering Times, January 1997
- » R.M. Guidash et al. (1995), "A modular highperformance 2µm CCD-BiCMOS technology for application specific image sensors and image sensor systems on a chip", SPIE vol. 2415, 256
- » E.R. Fossum (1993), "Active pixel sensors: Are CCDs dinosaurs?", SPIE vol. 1900, 2
- » H-S Wong (1996), "Technology and device scaling considerations for CMOS imagers", IEEE Trans. Electron. Dev. 43, 2131
- » G. Weckler (1967), "Operation of p-n junction photodetectors in a photon flux integrating mode", IEEE J. Solid-State Circuits SC-2, 65
- » R. Dyck & G. Weckler (1968), "Integrated arrays of silicon photodetectors for image sensors", IEEE Trans. on Electron Devices, **ED-15**, 196

- » P. Noble (1968), "Self-scanned image detector arrays", IEEE Trans. on Electron Devices, ED-15, 202
- » S. Chamberlain (1969), "Photosensitivity and scanning of silicon image detector arrays", IEEE J. Solid-State Circuits SC-4, 333
- » N. Koike et al. (1980), "MOS Area Sensor, part I", IEEE Trans. on Electron Devices, ED-27, 1676
- » S. Ohba et al. (1980), "MOS Area Sensor, part II", IEEE Trans. on Electron Devices, ED-27, 1682
- » M. Aoki et al. (1982), "2/3 inch format MOS single-chip color imager", IEEE Trans. on Electron Devices, ED-29, 745
- » E. Fossum (1997), "CMOS image sensors: Electronic camera-on-a-chip", IEEE Trans. on Electron Devices, 44, 1689
- » B. Dierickx et al. (1996), "Random accessible active pixel image sensors", Proc. SPIE 2950, 1
- » S. Mendis et al. (1997), "CMOS active pixel sensors for highly integrated imaging systems" IEEE J. Solid-State Circuits 32, 187
- » E. Fossum (1993), "Active pixel sensors: Are CCDs dinosaurs?", Proc. SPIE 1900, 2
- P. Lee et al. (1995), "An active pixel sensor fabricated using CMOS/CCD process technology", 1995 IEEE Workshop on CCDs and Advanced Image Sensors, Dana Point, CA

- » B. Burkey et al. (1984), "The pinned photodiode for an interline-transfer CCD image sensor", International Electron Devices Meeting technical digest, 28
- » R. Guidash et al. (1997), "A 0.6µm CMOS pinned photodiode color imager technology", International Electron Devices Meeting technical digest, 927