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ABSTRACT 

In this paper, an universal VLSI architecture for 
bit-parallel computation in GF(2", is presented. 
The proposed architecture is based on Montgomery 
multiplication algorithm, which is suitable for 
multiple class of GF(2"') with arbitrary field degree m. 
Due to the highly regular and modular property, our 
proposed universal architecture can meet VLSI 
design requirement. 

After implemented by 0.18um 1P6M process, our 
universal architecture can work successfully at 
125MHz clock rate. For the finite field multiplier, the 
total gate count is 1.4K for GF(2"') with any 
irreducible polynomial of field degree 1168, whereas 
the inverse operation can be achieved by the control 
unit with gate count of 0.3K. ' 
Table 1: Different finite field definitions for various 
applications, where p(x) is irreducible polynomial. 

1. INTRODUCTION 
The finite field computation is essential in various 

applications such as error correcting code and 
cryptosystem. However, there are multiple definitions 
of the finite fields for different applications, and the 
corresponding multipliers are slightly different due to'tbe 
irreducible polynomials. The Table I shows several 
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examples of different finite field application. Because 
the field degrees and irreducible polynomials are not 
matching, the multiplication operations must be executed 
by dedicated finite field multipliers leading to large 
circuit complexity. 

With the rapidly increasing interesting in digital signal 
processing techniques, many systems utilize digital 
signal processor @SP) to process data in real time and 
offer fast time to market. Thus, there is a demand for the 
universal finite field computation in software-based DSP 
implementation. 

Actually, the finite field addition and subtraction are 
just excursive OR operations. Therefore, what we 
interest is the multiplication and division (or say, the 
inverse operation) in finite field. The complexity of 
finite field multiplication is in modular operation. Hence, 
the Montgomery algorithm can be used to simplify the 
modular operation. This paper describes this algorithm to 
accommodate different irreducible polynomials in 
multiple finite fields and also eliminate the effect of the 
field degree m. 

First, in this paper, the Montgomery multiplication 
algorithm [I] is introduced in section 2. Section 3 
describes an universal finite field multiplier with two 
stage Montgomery multipliers. In section 4, we 
introduce the Fermat algorithm and realize the finite 
field inverse operation in universal multiplier. Section 5 
shows the implementation result of universal multiplier 
and inverter. Finally, the conclusion is given in section 6. 

2. MONTGOMERY MULTIPLICATION 
ALGORITHM 

An element A of the field GF(q") with a prime q can 

A ( x ) = C a i x '  = a  ,.., xn-' t a m  ., x " - ' t  ...+ a , x t a ,  

,where a, E GF(q) 

In the polynomial representation, multiplication in 
GF(q") corresponds to the multiplication of polynomials 
module an irreducible polynomial of degree m. Suppose 
A and B are two elements in GF(qm), and p(x) is the 
Corresponding irreducible polynomial of this field. Then, 

be interpreted as the polynomial representation: 
n-l 
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the multiplicative operation C=AB can be expressed as 
follows: 

C(x) = A(x)B(x)  mod p(x) (2) 

where C is also an element of GF(q"). According to the 
modular multiplication property in (2), we can adopt 
Montgomery multiplication algorithm to calculate the 
product C(x). The following equation defines the 
Montgomery product of A and B: 

&x)  = A(x)B(x)R' (x )  modp(x) (3) 

The polynomial R'(x) here is a fixed element of GF(qm) 
satisfying R(x)R'(x) = I  mod p(xJ while R(x)=f  . Note 
that the requirement of R(x) and p(x) being relatively 
prime is always consistent. It has been proven by [ l ]  that 
the result ?@)of (3) can be obtained by following 
equations: 

Q ( x )  = A(x)B(x)p ' (x )  modR(x) (4) 

&x)  = [ A ( x ) B ( x )  + Q ( x ) p ( x ) l l R ( x )  (5 )  

The polynomial p*(xJ in (4) is defined as p(x)p'(x)=l 
mod R(x). As compared with (3), it is evident that 
modulo p(x) operation is replaced by modulo R(x) and 
division by R(x) operations. Since R(x)=x" , 
implementation of (4) and (5 )  are much easier than that 
of (3). Fu?hermore, as A is interpreted in polynomial 
form and R (x)= im modp(x) ,  ( 3 )  can be rewritten as: 

E ( x )  = [a,-,B(x)x-' modp(x)l+[a,.,B(x)x" modp(x)] 

+...+ [o,B(x)x-" modp(x)] 
Rearrange this equation, an iterative representation 
comes out: 

d ( x )  = [a, . ,B(x) + [ . . [ ~ , B ( x )  + [o,B(x)x-'  modp(x)llx~' 

mod p(x)] ... lx-' mod p(x) 

Based on this equation and the transformation from (3) 
to (S ) ,  the Montgomery multiplication algorithm is 
derived as: 

Montgomerv multivlication algorithm: 

S,(x) = 0; 
for(i = 0; i < m; i + +) ( 

P.(x) = [(S,(x)+uiB(x))~'(x)1modx; 

s,,(x) = [S,(x) +ajB(x)+p , (x )p (x ) l /x ;  
I 
& x )  = S,(x);  

The termp*(xJ is the multiplicative inverse of&) under 
modulo x multiplication. 

3. UNIVERSAL FINITE FIELD MULTIPLIER 
FOR GF(2'") 

In GF(2"). elements are often represented in binary 
digits, and the coefficients ai in (1) are referred to the 
bits of A .  The binary representation will cause some 
reduction to Montgomery multiplication algorithm. 
Since p(x) is irreducible, the results of p(x) mod x and 
p'(x) mod x are both equal to 1. The p'(xJ term in the 
Montgomery multiplication algorithm can be eliminated, 
which leads pix )  to equal the least significant bit of the 
sum Six)+ aS(x). 

The number of recursive operation in Montgomery 
multiplication depends on the field degree m. However, 
some modification can be proposed to remove the effect 
of unexpected variable m. In equation (4) and (5) .  R(xj 
is modified to be Rdx)=xd, and d is a constant integer 
such that d 2 m .  Since the result of R'JxJ mo! p(x) is an 
element of GF(qm), there exists an element R d x J  in the 
field GF(qm) that satisfies R d x ) R ' d ~ ) = l  mod x .  
Therefore, the modified Montgomery multiplication 
(MM) algorithm for GF(2") with m s d i s  constructed: 

Modified Montgomery multiplication alporithm: 

MM (A(x ) ,  W x ) ,  P1(x)) ( 

for(i = O i  < d ; i + + ) (  
S , ( x ) = %  

i f ( i > m )  a i = &  

T ( x ) =  S , (x )+a ,B(x ) ;  

Sj,,(.4 = [ T ( x ) + t , p ( x ) l l x ;  
) 

S ( x )  = s, ( x ) ;  

1 

The term to is the least significant bit of the temporal 
element T(x). If the field degree is less than d, the most 
significant bits of A is set to zero .The final result will be 
multiplying the normal finite field product A(x)B(x) by a 
constant element R'dx) of GF(2'"). The output of 
Montgomery multiplier involves a constant factor R',,(x) 
modp(xJ with the standard product. Such constant factor 
can be canceled by applying one additional Montgomery 
multiplier. Calculation of the product C(x)=A(x)B(x) is 
completed using: 

K ( x )  = xzd mod&) (8) 
&x)  = M M ( A ( x ) , B ( x ) , M x ) )  (9) 
C(x) = MM(E(x),K(x),p(x)) (10) 

where K(x)  is treated as a constant value for a given p(x). 

The Montgomery multiplier architecture for GF(2") 
with m S 4  is shown in Fig.1. Fig.l(a) and Fig.l(b) 
indicate the function unit of Montgomery multiplier. 
Fig.l(c) shows the overall architecture of Montmogery 
multiplier in GF(2'). The symbol ai and bi are the bits 
of two input element A and B, which are often expressed 
as A=(a3a2al%) and B=(b3b2blbo) respectively. Similarly, 
mi is used to indicate the bits of irreducible polynomial 
and Sj are the output bits. Note that mo is always 1, and 
can be neglected after simplification. The proposed 
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architecture has a hardware complexity of O(Zd+d) and 
a latency of O(d) while the numeric d is the maximum 
field degree of a field that the multiplier can deal with. 

Register 

Reg A 

Reg B 

Reg K 
Ree S 

FIg.1 Montgomery muliipt7er(MM) swuaure for G F p )  for 
m S 4  

As the standard multiplication requires two 
Montgomery multiplications, an overall standard 
multiplier demands two Montgomery multipliers 
connected in series as shown in Fig. 2. However, in 
many situations such as finite field inversion and 
multiply-and-add operations in coding theory [3], not all 
of the multiplications need to have multiply-by-K(x) 
operations as shown in (IO).  

Clock Cycle(two Montgomery multiplications) - 
0 I-m-3 m-2 

A(x) OutofMMB OutofMMB 
A(x) Out of MMB Out of MMB 

Ab) A(x) K'(N 
0 0 OutofMMB 

Fig.2: Two stage finite field multiplier 

4. UNWERSAL FINITE FIELD INVERTER FOR 
GF(2') 

The finite field inverse operation is used frequently by 
many algorithms. Usually, the inverse operation is 
realized by looking up table, which costs much silicon 
area. Two-staged universal finite field multiplier is 
proposed to implement finite field inversion. The 
Fermat's algorithm [4] is described which can express 

. the inversion as serial operations. 

Fermat aleorithm 

B" = B"" 
= B""+... +*--I 

= B"'+"'+....ll 

= (p..(B(~*p',')'...,' 
Based on this algorithm, the inversion in GF(Zm) can 

be replaced by serial square and multiply operations. In 

additional, the Fermat algorithm shows us that inverse 
operation needs m-1 cycles which include two 
Montgomery multi lications in each c cle For exam le, 

three cycles are required. 
Fig.3 shows the architecture of inverter which is 

almost the same with multiplier. A control unit is 
added to realize the inverse operation, and the 
Montgomery multiplier A (MMA) is taken as a squarer. 
Table 2 shows the register contents during inverse 
operation. Initially, we input the finite field element to 
MMA and MMB. Then, during I to m-1 cycle, the 
input value is the previous output. At cycle m - I .  the 
input value K'(x) of register k is a constant, where 

We can know that K(x)  only varies with the finite field 
irreducible polynomial p(x). 

in GF(16), B'= Bpb-2= r= PfI' ('+2))= P 
' f81882) ?. 

K'(x) = id mod p(x). (1 1) 

Base on Fermat algorithm, the finite field inversion 
is realized by using multiplications. In general, it takes 
2m-3 standard multiplications in computing the inverse 
of an element in GF(2"). If the Montgomery multiplier 
is adopted, it will result in 2m-2 Montgomery 
multiplications. Another example is Berlekamp-Massey 
algorithm [3] in Reed-Solomon decoding procedure. The 
computation of discrepancy is a series of 
multiply-and-add operations [ 5 ] ,  and only one extra 
multiplicative count is needed while using Montgomery 

. .  
iultiplier. : 
. , . . . . . . . . 

: U(@ ' ' ~ 

Fig% Universal flnite field Inverter 

Table 2: Register state in inverse operanon for GF(2") 

5. IMPLEMENTATION RESULTS 

This implementation is designed by the standard cell 
library in a 0.18um lP6M process. The layout area is 
0.16.0.16 mm*, and the total gate count is about 1.7K. 
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Only one cycle is required to compute finite field 
multiplication. The post layout simulation for the 
proposed architecture is about 125MHz. However, 
250MHz can be achieved by inserting one pipeline 
register. 

Proposed 

As compared to another finite field multiplier 
proposed by [6] ,  our approach needs no additional pre 
and post-shifting. Table 3 compares the required 
instruction cycle between the proposed multiplier and 
the multiplier of [6] while operating over GF(2”’) with a 
multiplier that supporting maximum field degree of 8, 
where m is less than 8, Note that one instruction cycle 
here indicates a single shift operation, multiplication, or 
addition. And the finite field division in Table 3 is based 
on Fermat’s algorithm. 

Table 3: Comparison of universal multipliers 

2 2m-1 2n ~TAND 
+ I ~ T x o ~  

I I Instructioncycle 1 
I I I I 

I I I I I 

6. CONCLUSION 

We proposed an universal multiplier for GF(2”) based 
on Montgomery multiplication algorithm. As the 
multiplier for maximum field degree d is implemented, 
any multiplier for GF(2”) with field degree less than d 
can be executed. The proposed bit-parallel multiplier is 
regular without additional control circuit. In a software 
based design of error correcting code or cryptosystem on 
a DSP, the universal finite field multiplier is useful 
because of variant GF(2“‘) definition for different 
applications. Furthermore, the inverse operation can be 
realized by appending additional control unit to universal 
multiplier. This control unit only increases some gate 
count than original circuit. For each new specification, 
our approach requiring little modification can reduce not 
only the time to market but also the development cost. 
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