
The 2004 IEEE Asia-Pacific Conference on
Circuits and Systems, December 6-9,2004

An Universal VLSI Architecture for Bit-Parallel Computation in GF(23

Chien-Ching Lin, Fuh-Ke Chang, Hsie-Chia Chang, and Chen-Yi Lee

Department of Electronics Engineering
National Chiao Tung University

Hsinchu, Taiwan, R.0.C
Email: cclin@si2lab.org

ABSTRACT

In this paper, an universal VLSI architecture for
bit-parallel computation in GF(2", is presented.
The proposed architecture is based on Montgomery
multiplication algorithm, which is suitable for
multiple class of GF(2"') with arbitrary field degree m.
Due to the highly regular and modular property, our
proposed universal architecture can meet VLSI
design requirement.

After implemented by 0.18um 1P6M process, our
universal architecture can work successfully at
125MHz clock rate. For the finite field multiplier, the
total gate count is 1.4K for GF(2"') with any
irreducible polynomial of field degree 1168, whereas
the inverse operation can be achieved by the control
unit with gate count of 0.3K. '
Table 1: Different finite field definitions for various
applications, where p(x) is irreducible polynomial.

1. INTRODUCTION
The finite field computation is essential in various

applications such as error correcting code and
cryptosystem. However, there are multiple definitions
of the finite fields for different applications, and the
corresponding multipliers are slightly different due to'tbe
irreducible polynomials. The Table I shows several

Tl~c authors are grateful IO the suppon from the National Scicnce
Council of Taiwan. R.O.C., under the gran1 NSC 92-2218-E-W9-019

examples of different finite field application. Because
the field degrees and irreducible polynomials are not
matching, the multiplication operations must be executed
by dedicated finite field multipliers leading to large
circuit complexity.

With the rapidly increasing interesting in digital signal
processing techniques, many systems utilize digital
signal processor @SP) to process data in real time and
offer fast time to market. Thus, there is a demand for the
universal finite field computation in software-based DSP
implementation.

Actually, the finite field addition and subtraction are
just excursive OR operations. Therefore, what we
interest is the multiplication and division (or say, the
inverse operation) in finite field. The complexity of
finite field multiplication is in modular operation. Hence,
the Montgomery algorithm can be used to simplify the
modular operation. This paper describes this algorithm to
accommodate different irreducible polynomials in
multiple finite fields and also eliminate the effect of the
field degree m.

First, in this paper, the Montgomery multiplication
algorithm [I] is introduced in section 2. Section 3
describes an universal finite field multiplier with two
stage Montgomery multipliers. In section 4, we
introduce the Fermat algorithm and realize the finite
field inverse operation in universal multiplier. Section 5
shows the implementation result of universal multiplier
and inverter. Finally, the conclusion is given in section 6.

2. MONTGOMERY MULTIPLICATION
ALGORITHM

An element A of the field GF(q") with a prime q can

A (x) = C a i x ' = a ,.., xn-' t a m ., x " - ' t ...+ a , x t a ,

,where a, E GF(q)

In the polynomial representation, multiplication in
GF(q") corresponds to the multiplication of polynomials
module an irreducible polynomial of degree m. Suppose
A and B are two elements in GF(qm), and p(x) is the
Corresponding irreducible polynomial of this field. Then,

be interpreted as the polynomial representation:
n-l

i-II

0-7803-8660-4/04/$20.00 02004 IEEE 125

mailto:cclin@si2lab.org

the multiplicative operation C=AB can be expressed as
follows:

C(x) = A(x)B(x) mod p(x) (2)

where C is also an element of GF(q"). According to the
modular multiplication property in (2), we can adopt
Montgomery multiplication algorithm to calculate the
product C(x). The following equation defines the
Montgomery product of A and B:

&x) = A(x)B(x)R' (x) modp(x) (3)

The polynomial R'(x) here is a fixed element of GF(qm)
satisfying R(x)R'(x) = I mod p(xJ while R(x)=f . Note
that the requirement of R(x) and p(x) being relatively
prime is always consistent. It has been proven by [l] that
the result ?@)of (3) can be obtained by following
equations:

Q (x) = A(x)B(x)p ' (x) modR(x) (4)

&x) = [A (x) B (x) + Q (x) p (x) l l R (x) (5)

The polynomial p*(xJ in (4) is defined as p(x)p'(x)=l
mod R(x). As compared with (3), it is evident that
modulo p(x) operation is replaced by modulo R(x) and
division by R(x) operations. Since R(x)=x" ,
implementation of (4) and (5) are much easier than that
of (3). Fu?hermore, as A is interpreted in polynomial
form and R (x)= im modp(x) , (3) can be rewritten as:

E (x) = [a,-,B(x)x-' modp(x)l+[a,.,B(x)x" modp(x)]

+...+ [o,B(x)x-" modp(x)]
Rearrange this equation, an iterative representation
comes out:

d (x) = [a, . ,B(x) + [. . [~ , B (x) + [o,B(x)x-' modp(x)llx~'

mod p(x)] ... lx-' mod p(x)

Based on this equation and the transformation from (3)
to (S) , the Montgomery multiplication algorithm is
derived as:

Montgomerv multivlication algorithm:

S,(x) = 0;
for(i = 0; i < m; i + +) (

P.(x) = [(S,(x)+uiB(x))~'(x)1modx;

s,,(x) = [S,(x) +ajB(x)+p , (x)p (x) l /x ;
I
& x) = S,(x);

The termp*(xJ is the multiplicative inverse of&) under
modulo x multiplication.

3. UNIVERSAL FINITE FIELD MULTIPLIER
FOR GF(2'")

In GF(2"). elements are often represented in binary
digits, and the coefficients ai in (1) are referred to the
bits of A . The binary representation will cause some
reduction to Montgomery multiplication algorithm.
Since p(x) is irreducible, the results of p(x) mod x and
p'(x) mod x are both equal to 1. The p'(xJ term in the
Montgomery multiplication algorithm can be eliminated,
which leads pix) to equal the least significant bit of the
sum Six)+ aS(x).

The number of recursive operation in Montgomery
multiplication depends on the field degree m. However,
some modification can be proposed to remove the effect
of unexpected variable m. In equation (4) and (5) . R(xj
is modified to be Rdx)=xd, and d is a constant integer
such that d 2 m . Since the result of R'JxJ mo! p(x) is an
element of GF(qm), there exists an element R d x J in the
field GF(qm) that satisfies R d x) R ' d ~) = l mod x .
Therefore, the modified Montgomery multiplication
(MM) algorithm for GF(2") with m s d i s constructed:

Modified Montgomery multiplication alporithm:

MM (A(x) , W x) , P1(x)) (

for(i = O i < d ; i + +) (
S , (x) = %

i f (i > m) a i = &

T (x) = S , (x)+a ,B(x) ;

Sj,,(.4 = [T (x) + t , p (x) l l x ;
)

S (x) = s, (x) ;

1

The term to is the least significant bit of the temporal
element T(x). If the field degree is less than d, the most
significant bits of A is set to zero .The final result will be
multiplying the normal finite field product A(x)B(x) by a
constant element R'dx) of GF(2'"). The output of
Montgomery multiplier involves a constant factor R',,(x)
modp(xJ with the standard product. Such constant factor
can be canceled by applying one additional Montgomery
multiplier. Calculation of the product C(x)=A(x)B(x) is
completed using:

K (x) = xzd mod&) (8)
&x) = M M (A (x) , B (x) , M x)) (9)
C(x) = MM(E(x),K(x),p(x)) (10)

where K(x) is treated as a constant value for a given p(x).

The Montgomery multiplier architecture for GF(2")
with m S 4 is shown in Fig.1. Fig.l(a) and Fig.l(b)
indicate the function unit of Montgomery multiplier.
Fig.l(c) shows the overall architecture of Montmogery
multiplier in GF(2'). The symbol ai and bi are the bits
of two input element A and B, which are often expressed
as A=(a3a2al%) and B=(b3b2blbo) respectively. Similarly,
mi is used to indicate the bits of irreducible polynomial
and Sj are the output bits. Note that mo is always 1, and
can be neglected after simplification. The proposed

126

architecture has a hardware complexity of O(Zd+d) and
a latency of O(d) while the numeric d is the maximum
field degree of a field that the multiplier can deal with.

Register

Reg A

Reg B

Reg K
Ree S

FIg.1 Montgomery muliipt7er(MM) swuaure for G F p) for
m S 4

As the standard multiplication requires two
Montgomery multiplications, an overall standard
multiplier demands two Montgomery multipliers
connected in series as shown in Fig. 2. However, in
many situations such as finite field inversion and
multiply-and-add operations in coding theory [3], not all
of the multiplications need to have multiply-by-K(x)
operations as shown in (IO).

Clock Cycle(two Montgomery multiplications) -
0 I-m-3 m-2

A(x) OutofMMB OutofMMB
A(x) Out of MMB Out of MMB

Ab) A(x) K'(N
0 0 OutofMMB

Fig.2: Two stage finite field multiplier

4. UNWERSAL FINITE FIELD INVERTER FOR
GF(2')

The finite field inverse operation is used frequently by
many algorithms. Usually, the inverse operation is
realized by looking up table, which costs much silicon
area. Two-staged universal finite field multiplier is
proposed to implement finite field inversion. The
Fermat's algorithm [4] is described which can express

. the inversion as serial operations.

Fermat aleorithm

B" = B""
= B""+... +*--I

= B"'+"'+....ll

= (p..(B(~*p',')'...,'
Based on this algorithm, the inversion in GF(Zm) can

be replaced by serial square and multiply operations. In

additional, the Fermat algorithm shows us that inverse
operation needs m-1 cycles which include two
Montgomery multi lications in each c cle For exam le,

three cycles are required.
Fig.3 shows the architecture of inverter which is

almost the same with multiplier. A control unit is
added to realize the inverse operation, and the
Montgomery multiplier A (MMA) is taken as a squarer.
Table 2 shows the register contents during inverse
operation. Initially, we input the finite field element to
MMA and MMB. Then, during I to m-1 cycle, the
input value is the previous output. At cycle m - I . the
input value K'(x) of register k is a constant, where

We can know that K(x) only varies with the finite field
irreducible polynomial p(x).

in GF(16), B'= Bpb-2= r= PfI' ('+2))= P
' f81882) ?.

K'(x) = id mod p(x). (1 1)

Base on Fermat algorithm, the finite field inversion
is realized by using multiplications. In general, it takes
2m-3 standard multiplications in computing the inverse
of an element in GF(2"). If the Montgomery multiplier
is adopted, it will result in 2m-2 Montgomery
multiplications. Another example is Berlekamp-Massey
algorithm [3] in Reed-Solomon decoding procedure. The
computation of discrepancy is a series of
multiply-and-add operations [5] , and only one extra
multiplicative count is needed while using Montgomery

. .
iultiplier. :
. ,

: U(@ ' ' ~

Fig% Universal flnite field Inverter

Table 2: Register state in inverse operanon for GF(2")

5. IMPLEMENTATION RESULTS

This implementation is designed by the standard cell
library in a 0.18um lP6M process. The layout area is
0.16.0.16 mm*, and the total gate count is about 1.7K.

127

Only one cycle is required to compute finite field
multiplication. The post layout simulation for the
proposed architecture is about 125MHz. However,
250MHz can be achieved by inserting one pipeline
register.

Proposed

As compared to another finite field multiplier
proposed by [6] , our approach needs no additional pre
and post-shifting. Table 3 compares the required
instruction cycle between the proposed multiplier and
the multiplier of [6] while operating over GF(2”’) with a
multiplier that supporting maximum field degree of 8,
where m is less than 8, Note that one instruction cycle
here indicates a single shift operation, multiplication, or
addition. And the finite field division in Table 3 is based
on Fermat’s algorithm.

Table 3: Comparison of universal multipliers

2 2m-1 2n ~TAND
+ I ~ T x o ~

I I Instructioncycle 1
I I I I

I I I I I

6. CONCLUSION

We proposed an universal multiplier for GF(2”) based
on Montgomery multiplication algorithm. As the
multiplier for maximum field degree d is implemented,
any multiplier for GF(2”) with field degree less than d
can be executed. The proposed bit-parallel multiplier is
regular without additional control circuit. In a software
based design of error correcting code or cryptosystem on
a DSP, the universal finite field multiplier is useful
because of variant GF(2“‘) definition for different
applications. Furthermore, the inverse operation can be
realized by appending additional control unit to universal
multiplier. This control unit only increases some gate
count than original circuit. For each new specification,
our approach requiring little modification can reduce not
only the time to market but also the development cost.

7. REFERENCES

C.K. Koc and T Acar, “Fast Software Exponentiation in

GF(2‘)”. 13th IEEE Symposium on Computer

Arithmetic, pp.’225-231, 1997.

R.J. McEliece, “Finite Fields for. Computer Scientists

and Engineers”, Kluwer Academic Publishers, Boston.

MA, 1987.

R.E. Blahut, “Theory and Practice of Error Control

Codes”, Addison-Wesley Pulishing Company. MA.

1983.

T. Itoh and S. Tsujii. “A Fast Algorithm for Computing

Multiplicative Inverses in GF(2”’) Using Normal Bases”,

Journal of Information .and Computation 1.. vol 78,

pp.171-177.1988.

H.C. Cbang, C.B. Shung and C.Y. Lee. “A

ReedSolomon Product-Code (RS-PC) Decoder Chip

for DVD Applications”, IEEE Joural of Solid-State

Circuits, Vol. 1, No. 2, pp. 229-236, Feb. 2001

L. Song, K.K. Parhi. I. Kuroda. and T. Nishitani,

“HardwarelSoftware Codesign of Finite Field Datapath

for Low Energy Reed-Solomon codecs”, IEEE

Transactions on Very Large Scale Integration Systems.

Vol. 8, No. 2, pp. 160-172, Apr. 2000

128

