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Abstract

Negative bias temperature instability (NBTI), in which interface traps and positive oxide charge are generated in
metal–oxide–silicon (MOS) structures under negative gate bias, in particular at elevated temperature, has come to
the forefront of critical reliability phenomena in advanced CMOS technology. The purpose of this review is to bring
together much of the latest experimental information and recent developments in theoretical understanding of NBTI.
The review includes comprehensive summaries of the basic phenomenology, including time- and frequency-dependent
effects (relaxation), and process dependences; theory, including drift–diffusion models and microscopic models for inter-
face states and fixed charge, and the role of nitrogen; and the practical implications for circuit performance and new
gate-stack materials. Some open questions are highlighted.
� 2005 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of this review is to bring together much
of the latest information and recent developments in
understanding of NBTI. There has recently been an
explosion of publications on this subject (see, for exam-
ple, [1,2]). We aim to be as up-to-date as possible and to
have this review represent the state of the field, but the
rapid pace of development in this topic means that by
the time this review appears in print it may easily miss
some important new development. Recent experimental
work, especially in the area of AC stress and the associ-
ated recovery phenomena, will almost certainly lead to
improved understanding in the near future. We have
0026-2714/$ - see front matter � 2005 Elsevier Ltd. All rights reserv
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tried to present an objective and unbiased review of
the work of many groups, in spite of the fact that one
of us (SZ) is the author of a particular NBTI model. It
is hoped that this review may help to stimulate addi-
tional work by highlighting some areas of disagreement
and unresolved issues.

This review is organized as follows: Section 2 de-
scribes the experimental observations which characterize
NBTI. This section includes sub-sections on basic and
novel observations and methods, and on process depen-
dencies. Section 3 deals with models, comparing and
contrasting the various theories describing NBTI. This
section covers macroscopic drift/diffusion models and
microscopic models, including the role of nitrogen. Sec-
tion 4 treats the practical implications of NBTI, includ-
ing the performance degradation of circuits and the
implications for new gate-stack materials. Finally, Sec-
tion 5 summarizes some of the many open questions.
ed.
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Fig. 2. Bias conditions during circuit operation of a CMOS
inverter. With input at ground, output is high and the p-MOS
device (top) is under uniform negative gate bias with respect to
its substrate. With input high, output is at ground and the
n-MOS device (bottom) is under uniform positive bias.
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2. The phenomenon of NBTI

2.1. Basic observations and methods

We begin with a description of the more rudimentary
aspects of the NBTI phenomenon. These have already
been extensively reviewed by others [3,4], so we give here
only a brief overview.

The name, negative bias temperature instability
(NBTI), refers to the generation of positive oxide charge
and interface traps in metal–oxide–silicon (MOS) struc-
tures under negative gate bias, in particular at elevated
temperature. First reported by Miura and Matukura
[5], and further characterized by researchers at Bell Lab-
oratories [6,7], Fairchild Semiconductor [8], and RCA
Laboratories [9], the effect was remarkable because an
increase in positive charge under negative gate bias
implicated a mechanism distinct from the migration of
mobile ions which were of much concern in these early
MOS studies. (Fig. 1). In terms of practical impact on
field-effect transistors (FETs), the greatest impact of
NBTI occurs on p-FET devices since only those experi-
ence a uniform negative bias condition during typical
CMOS circuit operation (Fig. 2).

The early studies outlined the following basic fea-
tures of NBTI-induced degradation: A broad interface
state density peak near mid-gap or in the lower half of
the gap [7,10], approximately equal amounts of positive
oxide charge and charge in interface states [8], de-trap-
ping or relaxation after removal of bias, [10,11] power-
law dependence on time with exponent �0.2–0.3
[12,13] and on voltage or oxide field with exponent
�2–3 [13], and thermally activated behavior [13] with
activation energies from 0.06 to 0.2 eV reported
[10,14–16]. Similar amounts of positive charge and inter-
face state generation occur for both n- and p-type silicon
Fig. 1. Effect of negative gate bias on MOS capacitor. (a) Positive ion d
the Si/SiO2 interface. The resulting flat band shift is positive. (b) Charg
de-trapping, causes an increase in the net positive charge at the Si/Si
substrates [8,10], however since the charge in the inter-
face states depends on bias the net effect on threshold
voltage, DVt, is greater for p-FETs, because in this case
the positive oxide charge and positive interface charge
are additive [13]. This is another reason why NBTI is
of greater practical concern for p-FET devices compared
to n-FET. In any case, the net contribution to threshold
voltage shift will be

DV t ¼ qðDN it þ DN fÞ=Cox ð1Þ

where q is the electron charge, Cox is the oxide capaci-
tance, Nit is the density of charged interface states and
Nf is the density of fixed charge or slow oxide traps,
i.e., those whose occupancy cannot follow rapid changes
in the Fermi level Ef.

The characterization of NBTI typically entails stan-
dard MOS techniques, such as capacitance–voltage,
charge pumping, FET parameter extraction, etc. A
rift causes a reduction in the net amount of positive charge near
e exchange with the Si substrate, either hole trapping or electron
O2 interface. The resulting flat band shift is negative.
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negative bias is applied to the gate of the sample under
test (either a capacitor or transistor structure), with
interruptions at desired intervals for device characteriza-
tion. During the stress all other terminals (substrate,
source, and drain) are held at ground potential. In this
way, the bias condition represents the situation experi-
enced by the p-FET in a CMOS inverter or logic gate
with input low (see Fig. 2). Typical results for DVt as a
function of stress time are shown in Fig. 3. Long-chan-
nel and wide devices (�0.5 lm or larger in each dimen-
sion) may be used in order to increase the statistical
certainty [17] and to focus on the characterization of
the oxide itself without potential complications from
process effects near the device edges. However, a detailed
study of channel length and width dependence can be
important for actual technology qualification [18].

The criterion for device failure is circuit-dependent,
but is often benchmarked at 50 mV shift [4] or DIds/
Ids � 10%. The generation of 1011 cm�2 positively
charged defects results in a threshold voltage shift of
DVt = 5 mV · tox (nm) where tox is the oxide thickness.
With technology scaling, the thickness of the gate dielec-
tric has continually decreased, and therefore DVt is pro-
portionally reduced. However, several effects conspire to
bring NBTI to the attention of device and circuit design-
ers: first, the operating voltage has not scaled as rapidly
as gate oxide thickness, resulting in higher fields which
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Fig. 3. Typical result for threshold voltage shift resulting from
p-MOS negative bias stress, (a) linear plot; (b) same data on
log–log plot showing power-law behavior.
enhance the NBTI [4]; second, device threshold voltage
scaling has not kept pace with operating voltage, which
results in larger percentage degradation of drive current
for the same DVt [19]; and third, the addition of nitrogen
into the gate dielectric for gate leakage reduction and
control of boron penetration has had the side effect of
increasing NBTI [20].

2.2. Novel and advanced observations and methods

The recovery, or relaxation, of NBTI [11] has re-
ceived increased attention recently as NBTI has come
to the forefront of critical reliability phenomena in ad-
vanced CMOS technology. Under actual AC operation
conditions this recovery phenomenon, sometimes re-
ferred to as Dynamic NBTI, may result in a less severe
net shift in device parameters over the long term, com-
pared to the expected DC result [16,21,22]. This is illus-
trated in Fig. 4 showing the threshold voltage shift as a
function of time, with intervals of stress (gate negative,
i.e., p-FET in inversion) and recovery (gate positive,
i.e., p-FET off). Large recovery of Vt occurs during the
off stage. At each stress interval the Vt degradation at
first returns quickly, then continues to degrade more
slowly. Over the long term, the net degradation is less
than for same DC equivalent stress time without the
relaxation intervals. The ratio of AC to DC degradation
is affected by the duty cycle. At 50% duty cycle, the net
DVt is less than one-half of its DC value, with little or no
frequency dependence up to 500 kHz according to some
reports [23–26] but then decreasing further above 2 MHz
[27]. Since NBTI follows a shallow power-law depen-
dence on time, i.e., tn (n = 0.2–0.3), a 2· decrease in deg-
radation results in better than 10· longer lifetime. At
lower duty cycle, the improvement can be as much as
100· [25].
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Fig. 4. Threshold voltage shifts in a 2 nm nitrided oxide for
a continuous stress (open squares) at Vg = �2.5 V and for
interrupted stress with an positive bias interval (Vg = +1.5 V)
(filled circles). After [16].
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Fig. 6. Recovery of threshold voltage shift (DV(t)/DVt(0.2 s)) as
a function of recovery time after stress. After [29].
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Even for a DC stress, accurate quantitative assess-
ment needs to correctly take relaxation into account, lest
it distort the measurement results, for correct extrapola-
tion of NBTI lifetime. The usual interrupted stress tech-
niques can result in uncharacterized delays between
stress and measurement, leading to errors and uncer-
tainty in the degradation rate. It has been shown that
the apparent power-law exponent for the time depen-
dence increases if the delay increases between the re-
moval of stress voltage and the measurement of device
parametric degradation, as shown in Fig. 5 [21,28,29].

These results indicate that even a nominally �DC�
experiment such as Fig. 3, or the upper curve in
Fig. 4, may be distorted by relaxation effects since each
measurement point involves removing the stress, how-
ever briefly [30]. One suspects that many results in the
literature may be influenced by hitherto uncharacterized
relaxation effects. To avoid this, the measurement inter-
val should be kept as short as possible, but since DVt

recovers very quickly at short relaxation times this
may be difficult in practice. Measurement times below
1 s may be fairly easily achieved [29,31] by doing a sin-
gle-point measurement of the drain current near thresh-
old in the linear region ðI lind Þ, rather than a full Id–Vg

sweep, and using the known initial Id–Vg characteristics
to estimate DVt from DI lind at fixed Vg. The threshold
voltage recovery time dependence is shown in Fig. 6.
The recovery follows a log(t) dependence down to at
least 1 ms [31], so extrapolating to zero delay is not
possible.

To avoid recovery effects altogether, it is possible to
measure degradation in real-time by monitoring the
drain current (Ids) with a small (�50 mV) drain voltage
during stress [29,31]. By applying a small gate voltage
modulation dVg (�100 mV) it is likewise possible to
measure the transconductance gm(t) = dIds/dVg continu-
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Fig. 5. (a) NBTI degradation vs. stress time for various delays betwee
delay time. After [28].
ously at stress condition [32,33]. This relation can be
numerically integrated to deduce DVt = �dIds/gm. An-
other possible technique is to monitor the frequency deg-
radation of a ring oscillator during stress [34]. The
transistors in the ring should be designed with long
channel length to avoid additional degradation from
hot carrier effects. Circuit simulation is then required
to relate the observed frequency shift to a threshold volt-
age shift.

As stated in Eq. (1), two components separately con-
tribute to DVt, the interface states (Nit) and oxide �fixed�
charge (Nf). It is possible to distinguish these compo-
nents, e.g., by using charge pumping (CP) to measure
the Nit contribution separately. The time dependences
of DNit and DVt may differ [14,35], with the power-law
exponent for DNit remaining close to 1/4 while DVt or
DNf have a more shallow time dependence, and the acti-
vation energies for DNit is higher than for DVt or DVf

(0.2–0.16 eV vs. 0.15–0.06 eV) [14,16,30]. The activation
(b)
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energy for interface state creation is consistent with
older data on trap creation in SiO2 [36], and the lower
temperature dependence for the net threshold voltage
shift is consistent with hole trapping [16]. In the future,
it may become more important to try to distinguish
defect generation from hole trapping at existing defects.

Some researchers also found that as a function of fre-
quency, DNit remains constant but DVt decreases (Fig. 7)
[37]. This implies that the Nf component (presumably,
hole trapping) becomes less important at higher fre-
quency. Consistent with this, they also reported that
the recovery of DNit under positive bias is much less than
that of DVt, as shown in Fig. 8 [15,16,30,35,37–40].
From this it may be concluded that re-passivation of
interface states is a negligible part of the relaxation
mechanism, and that hole de-trapping dominates this
process.

Taken together, the above results tend to a consistent
picture: the shallower time dependence of DNf explains
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Fig. 8. Relative shifts for the interface trap density and the
threshold voltage vs. relaxation time following 2500 s NBTI
stress. After [37].
the shallower time dependence for shorter delay times
where Nf has not yet relaxed. Other researchers, how-
ever, have observed a different behavior, e.g., Nit recov-
ery comparable to that of Vt [25,41–43] or I

lin
d [31]. Some

studies found recovery to be independent of the magni-
tude or sign of the applied bias during recovery, suggest-
ing a neutral species is involved, e.g., re-passivation of
Nit by atomic hydrogen [31], while others report that
the passivation is enhanced with positive bias, suggest-
ing either a positive species such as H+ being pushed
back toward the Si/SiO2 interface, or electrons from
the substrate neutralizing the trapped holes [25,42,43].

Temperature-dependent stress and recovery experi-
ments indicate that the recovery is slower at higher tem-
perature [31,43]. At room temperature and below, nearly
100% recovery of I lind degradation can be obtained [31],
which suggests that hole trapping dominates in this
regime, whereas permanent interface trap creation re-
quires higher temperature. For a thinner oxide, where
sufficient tunneling current may flow to cause the gener-
ation of additional traps and interface states, the room
temperature recovery is less than 100% [44].

The power-law time dependence used in most NBTI
descriptions may not be strictly valid, especially for
long-time stress where saturation is sometimes observed
[45–48]. An example of this is shown in Fig. 9. In these
data the power-law exponent changes from �0.25 ini-
tially (stress time �100 s) to 0.16 at 106 s stress time,
and the saturation level is voltage dependent.

Saturation such as shown in Fig. 9 may have impor-
tant implications for lifetime assessment [45,48,49]. The
end-of-life degradation will be determined by the satura-
tion level, if the saturation time is shorter than the product
life time (e.g., 10 years), rather than the extrapolation
from short time stress data. This is illustrated schemati-
cally in Fig. 10, which shows lifetime increasing more
rapidly at low voltage because of the saturation and
decreasing power-law slope.
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2.3. Process dependencies

The effect of process conditions on NBTI has been
the subject of extensive but largely empirical study. Of
most interest lately is the effect of nitrogen, which will
be the subject of a separate section.

It was established early on that hydrogen and/or
water play a large role in NBTI [9,50] and that water
released from intermetal dielectrics in the upper layers
of an integrated circuit can increase NBTI. A silicon
nitride barrier (Si3N4) layer above the transistors and
other barrier materials can be used to control this effect
[51,52]. Excess hydrogen annealing will also increase
NBTI [53,54]. Another impurity which has been shown
to increase NBTI is chlorine [55], while fluorine has a
beneficial effect [46,53,56]. Replacing hydrogen by its
heavier isotope deuterium has been shown to reduce
NBTI [20,46,57] consistent with a diffusion process,
but this effect has not been consistently reproduced
[58]. The possible effect of boron is not clear: one report
shows an increase in NBTI due to boron penetration
from the gate [18], while another shows the opposite
trend [59].
3. Theories and models

Theoretical treatments of NBTI may be divided
along two lines of investigation: models to explain the
dependence on time, temperature, and voltage/field;
and microscopic models of the defects responsible for
charge, e.g., to identify the charged defects or to under-
stand the origin of nitrogen-enhanced NBTI.

3.1. Reaction–diffusion and drift models

From the earliest reports [5] an electrochemical reac-
tion (between holes and defects) at the Si/SiO2 interface
was put forward as the mechanism for NBTI, although
trapping of holes in near-interface states by thermally-
assisted tunneling was also considered [9,11]. It is well
established that the NBTI phenomenon is not dependent
on current flow through the oxide, in contrast to oxide
breakdown, although as oxides have become thinner
the increasing tunneling current can lead to additional
defect generation which may have characteristics similar
to NBTI.

Leaving the microscopic details of the electrochemi-
cal reaction for later, the time dependence of NBTI
has been treated as a reaction–diffusion (R–D) process,
schematically expressed as [12,60,61]

electrically inactive

Si=SiO2 interface defect

� �
þhole

$ðoxide positive chargeÞþ ðinterface trapÞþXinterface

ð2Þ

and

Xinterface $diffusion
Xbulk ð3Þ

where X represents a mobile species which diffuses away
from the interface.

The following two equations then describe the gener-
ation of interface traps through reaction and diffusion
terms [12,60]:

dN it

dt
¼ kFðN 0 � N itÞ � kRN it½X� ð4Þ

dN it

dt
¼ �DX

d½X�
dx

þ lEox½X� ¼ �DX

d½X�
dx

� qEox

kT
½X�

� �
ð5Þ

where N0 is the initial concentration of interface defects,
[X] is the concentration of the mobile species at the
interface, and DX is the diffusion constant, and we have
used the Einstein relation l = qD/kT where q is the mag-
nitude of the electron charge and k is Boltzmann�s con-
stant. The magnitude of the oxide field is Eox and the
field is assumed to be in the direction to cause X to drift
toward the gate. The right side of Eq. (5) expresses the
drift and diffusion of the species X; the second (drift)
term is not present if X is uncharged. It is generally
assumed that drift/diffusion is the rate-limiting process,
so that Reaction (4) may be considered to be in quasi-
equilibrium, giving, for Nit � N0,

N it½Xð0; tÞ� � kF
kR

N 0. ð6Þ

The Nit growth is then controlled by the diffusion and
drift of X, following the usual differential equation

o½X�
ot

¼ DX
o2½X�
ox2

� lEox
o½X�
ox

. ð7Þ

Another useful relation sometimes invoked in treat-
ments of NBTI is the conservation rule [29,61,62]

N itðtÞ ¼
Z

½X�dx ð8Þ
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in which the integral extends over the oxide thickness.
This expresses the fact that each released species X
leaves behind one interface state.

These equations become difficult to solve when the
boundary conditions for a thin oxide are considered.
For an infinitely thick oxide (i.e., oxide thickness
tox > (4Dt)1/2 where t is the time), a solution has been
given after a lengthy derivation [12] for the case of a
neutral diffusing species as

N it ¼ Rt1=4 ð9Þ
where R ¼ 1:16 kFN0

kR

� �1=2

D1=4.

A simple but instructive derivation of this time
dependence has been given [61]. From classical diffusion
the mean distance traveled by [X] is �x ¼ ðDtÞ1=2. Using
Eq. (8) and taking a triangular profile for simplicity
gives Nit = 1/2[X(0,t)](Dt)1/2. Substituting into Eq. (6)
we obtain

N it ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

kF
kR

N 0

s
ðDtÞ1=4

as well as the relation

½Xð0; tÞ� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
kF
kR

N 0

r
ðDtÞ�1=4

The derivation of the 1/4 power-law exponent is
based on several simplifying analytical assumptions.
Numerical simulations have given values that are both
somewhat larger [61] and smaller [63].

For finite oxide thickness, if it is assumed that the
gate electrode is an absorber for the diffusing species,
the rate of Nit generation depends inversely on tox but
with the same t1/4 time dependence, if X is neutral
[60,64]. (A reflecting interface would cause the time
dependence to slow down and saturate.) Experimentally,
this thickness dependence was verified for Nit, but Nf

was found to be independent of tox [14,64]. Another
description of the effect of oxide thickness has claimed
that the time dependence changes to t1/2 when the diffu-
sion front of X reaches the gate electrode [61]. Experi-
mentally, a slightly steeper time dependence (not as
steep as t1/2) has been reported for thin oxides at longer
times and attributed to the finite-thickness effect [65].
The break point in this case occurred at fairly low values
of degradation (DVt < 10 mV). Most data have not
shown this effect.

For charged species, but again assuming infinite
thickness, the solution at large t is asymptotically [60]

N it ¼ cRt1=2 ð10Þ

where c ¼ lEox

2
ffiffiffiffiffi
DX

p . The different time exponent (1/2 vs. 1/4,
which is closer to experimental observation) has led
most researchers up to now to reject the notion of a
charged diffuser [60,61].

The electric field dependence of NBTI arises explic-
itly in these treatments only for charged diffusing spe-
cies, Eq. (5). If X is neutral, then the field dependence
must be contained in the details of the electrochemical
reaction, Eq. (2). If the positive charge in the oxide is
located a distance d from the Si/SiO2 interface, the
enthalpy of reaction will be DH = q(DH0 � dEox), giving
an exponential field dependence /exp(qdEox/kT) [12]. A
related idea is that in the presence of an electric field the
dissociation activation energy of the Si–H dipole is
reduced, again giving an exponential voltage dependence
[66]. This form is used by some groups [63], while an
empirical power-law form form such as E3=2

ox [14,64] or
E4
ox [41] (Fig. 11) is often used by others.
A correct treatment of the drift/diffusion of X should

include the dispersive nature of this process in an amor-
phous material [29,48,49,62,67]. Dispersive transport
arises when the mobile species experiences a broad dis-
tribution of barrier heights, leading in turn to an expo-
nentially broad distribution of hopping times.

For dispersive transport, the diffusion �constant� may
be replaced by the time-dependent expression DX(mt)

b�1,
where b ¼ kT=E0 is the dispersion parameter (0 6 b 6

1), E0 is a characteristic energy scale, and m is a charac-
teristic frequency, and Eq. (7) can be replaced by [29,62]

½X� ¼ 1

m
DXðmtÞb

o2½X�
ox2

� ðqEox=kT Þ
o½X�
ox

� �
ð11Þ

which can be solved straightforwardly [29,62] and
together with Eqs. (5) and (6) leads to expressions for
the time dependence of Nit,

(a) for a neutral species,

N it ¼ RðmtÞb=4 ð12Þ
where R ¼ kF

kR

� �1=2
D
m

� 	1=4
and

(b) for a charged species, in the limit of high field or
long time where the drift term dominates,

N it ¼ RðmtÞb=2 ð13Þ
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where R ¼ kF
kR

� �1=2
lEox

m

� 	1=2
. In the classical limit b = 1

and the time dependences in Eq. (12) and Eq. (13) revert
to 1/4 and 1/2, respectively, as found earlier for neutral
vs. charged species. However, for dispersive transport
the value of b may be typically �0.3–0.5, so that it is
not necessary to rule out the possibility of charged spe-
cies as previously believed based on classical (Gaussian)
diffusion results.
An alternative approach [48] bypasses solving the dif-
fusion problem, and uses statistical mechanics to write
Eq. (6) as

½Xinterface� ¼ N ie
�Ei=kT ððN 0=N itÞ � 1Þ ð14Þ

where Ei is the energy required to generate interstitial
species X at the interface and Ni is the density of avail-
able interstitial sites. Adopting the view that X is posi-
tively charged so that the drift term dominates and
assuming the dispersive transport expression for the
mobility, Eq. (5) becomes

dN it

dt
¼ DXðmtÞb�1 qEox

kT
N ie

�Ei=kT ððN 0=N itÞ � 1Þ ð15Þ

which can be integrated to yield

DN it � N 0 ln
N 0

N 0 � DN it

¼ �RðmtÞb ð16Þ

where R ¼ 1
bmDX

qEox

kT N ie
�Ei=kT .

This gives DNit = R(mt)b at early times, and at long
times becomes a stretched exponential,

DN it ¼ N 0ð1� expð�RðmtÞb=N 0ÞÞ. ð17Þ

In addition this allows some model parameters to be
given physical significance, e.g., the saturation time is
[48]

s ¼ m�1ðR=N 0Þ�1=b ¼ m�1 N ie
Ei=kTDXqEox

N 0kTb

� ��1=b

ð18Þ

These various models differ significantly in their pre-
dictions, e.g., of the dependence on the mass of the dif-
fusing species through the dependence on the diffusion
constant D / 1=

ffiffiffiffi
m

p
. The diffusion models, both Gauss-

ian (Eq. (9)) and dispersive (Eq. (12)), depend on the dif-
fusion constant as D1/4, whereas the dispersive drift
models depend on either D1/2 (Eq. (13)) or linearly in
D (Eq. (17)). Experimentally, a reduction of NBTI by
a factor of at most 1.5 has been observed in deuterated
samples, [20] consistent with Eq. (17). Other experiments
[58] showed smaller effects.

The stretched exponential form (Eq. (17)) was previ-
ously suggested empirically to fit both NBTI and hot-
carrier degradation [68]. This form gives a saturation
at long times, as a natural outcome, as might be ex-
pected for a process which involves the depassivation
of interface defects.

Many NBTI models give expressions only for the
interface state density Nit (e.g., Eqs. (9), (12), (13),
(17), and (19) below), with the implicit assumption that
the fixed charge component Nf is uninteresting or trivi-
ally related to Nit as a proportionality, but experiments
(e.g., Figs. 7 and 8) tell us that Nf should be considered
more rigorously. One approach [48] is to assume that
bulk traps are generated in proportion to Nit but that
the occupancy of these traps depends on the Fermi level
during stress. The result is an expression for the total Vt

shift with the same stretched exponential form as Eq.
(17), with a saturation value DVmax which depends on
the stressing field as indicated in Figs. 9 and 10.

The dispersive transport picture predicts a tempera-
ture-dependent exponent for the time dependence, via
the dispersion parameter b = kT/E0. This further leads
to a non-Arrhenius temperature dependence, [62] since
according to Eq. (12), (13) or (17) at fixed time DNit / mn

where n is proportional to kT/E0. Taking the log of this
expression yields ln(DNit) / (kT/E0)ln(m). Fitting data to
this relationship gives a value of m = 500 s�1. This seems
rather low, i.e., much less than a typical phonon fre-
quency (�1012 s�1). However, it is consistent with the
empirical relation known as the Meyer–Neldel rule com-
monly observed for dispersive transport in amorphous
materials [69,70].

A different approach, again invoking the concept of
disorder, starts from the observation that the Si–H bond
breaking energy has a broad distribution [37,71]. This
results in the following relation:

DN it ¼ N 0=ð1þ ðt=sÞ�bÞ ð19Þ

where b = kT/r is again a dispersion parameter, r being
the width of the energy distribution. The saturation
onset time is s = s0exp(Ed/kT) where Ed is the Si–H dis-
sociation energy, which may be voltage dependent. At
early times Eq. (19) reduces to the power-law form
DNit = N0(t/s)

b.
Several models have been published explaining the

recovery phenomenon in terms of diffusion of a hydrog-
enous species back to the Si/SiO2 interface when the gen-
eration term is turned off. If the recovery follows the
same tb time dependence as the generation, then a phe-
nomenological model [72] writes the recovery phase as

DV r
t ¼ DV t;i�1ð1� aðDtÞbÞ ð20Þ

where DVt,i�1 is the shift at the end of the prior stress
phase and a is a parameter indicating the fraction which
does not recover during a recovery time equal to the pre-
vious stress time. The net shift during the next stress
phase is then written as

DV t;i ¼ Rðteff þ DtÞb ð21Þ

where teff is the time at which a DC stress would have
reached the same starting degradation level DV r

t . The
net degradation under AC stress can be estimated by
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repeating this sequence. Numerical calculations based
on the classical diffusion models have been published
with similar results [63,73].

An analytic form for recovery, after a stress time
tstress, has been given for classical (Gaussian) diffusion
[73] as

N itðt0Þ ¼ N 0
it½1� ðt0=2Þ1=2=ð1þ t0Þ1=2� ð22Þ

where t 0 = t/tstress and N 0
it is the interface state density at

the beginning of relaxation. According to the dispersive
diffusion model [29] the asymptotic solution for zero
field is

N itðt0Þ ¼ N 0
it½1þ t0ðb=2Þ��1. ð23Þ

This expression behaves approximately logarithmically
around t 0 = 1, in agreement with data [29,31,33,43,
44,74].

Unfortunately, none of these models correctly ad-
dress the fact that many researchers (but not all) agree
that the recovery of Vt is dominated by the reduction
in the Nf component, with very little or no recovery of
Nit. This argues against any recovery mechanism being
described simply as the passivation of Si dangling bonds
by hydrogen, and suggests a possible role for hole
detrapping by tunneling or thermal emission. This is
an area ripe for investigation.

3.2. Microscopic models for Nit and Nf

It is generally believed that the initially electrically
inactive surface defect in Eq. (2) comprises a hydrogen
passivated Si dangling bond, here denoted Si–H, and
that X is hydrogen (atom or proton) or some water-
related species, (e.g., OH or H3O

+) [12,50,75]. The inter-
face trap is then supposed to be a silicon dangling bond
denoted Si� which results when H is removed from Si–H.
A detailed critical analysis of the proposed reactions has
been given [60,64]. Here we simply list the various pro-
posals for the reactants in Eq. (2) (Table 1).

Since in all cases the interface trap is assumed to be
Si�, we have not listed this component in the table. Note
that the last three models do not posit two separate enti-
ties for the interface states and the oxide positive charge;
Table 1
Microscopic reaction models

Interface defect Oxide positive charge X

Si–H + Si–O–Si Si+ Si–OH
Si–H + H2O Same as X H3O

+

Si–H Same as X H+

Si–H Si+ H2

Si–H Si+ H
Si–H + H+ (from substrate) Si+ H2
in these models all of the positive charge is in the form of
charged interface dangling bonds. According to some
viewpoints, therefore, bulk positive charge generation
is a separate process involving trapping of holes, not
defect generation via a low-field reaction [61,65,79].

The last reaction in Table 1 requires interstitial
atomic hydrogen. This reaction is known from radiation
damage [80], plasma processing [81], and hot electron
injection experiments [36,82]; its possible role in NBTI
has only recently been proposed based on first-principles
calculations of the properties of H at the Si/SiO2 inter-
face [78].

All the listed reactions, except the last, require a hole.
However, attempts to prove this component by varying
the hole density at the interface at fixed oxide field (this
can be done, for example, by applying a positive sub-
strate bias to the n-type substrate of a p-FET) have seen
no variation in the rate of defect generation, unless the
substrate bias is greater than �2 V in which case hot-
hole injection may cause additional oxide damage
[79,83–85]. This supports the idea that the rate-limiting
step is the drift/diffusion of the mobile species away
from the interface, rather than the reaction.

It does not appear possible to decide among the pos-
sibilities listed in Table 1 purely on the basis of the
kinetic behavior alone [60,64]. Therefore we must rely
on other criteria, e.g., independent measurements of
the species X. However, such criteria have net yielded
any definitive answer.

The identification of the interface trap as Si� (named
the ‘‘Pb center’’) is based on an extensive history of elec-
tron paramagnetic resonance (EPR; also called electron
spin resonance, ESR) studies [75]. The Pb center is an
amphoteric defect with electronic levels in the upper
and lower portions of the Si band gap, and its reactions
with hydrogen, e.g.,

Si–H+H$Si�+H2 ð24Þ

have been verified [86–88] Two versions of Pb centers,
denoted Pb0 and Pb1, are present at the (100)Si/SiO2

interface, whose physical and electronic structures are
still debated [89]. The EPR studies of NBTI are very
few [57,76,77].
Refs. Reaction

[12] Si–H + Si–O–Si + h+ M Si� + Si+ + Si–OH
[76,77,50] Si–H + H2O + h+ M Si� + H3O

+

[50,63] Si–H + h+ M Si� + H+

[61,63] Si–H þ hþ $ Si�þ þ 1
2H2

[63] Si–H + h+MSi�++H
[63,78] Si–H + H+

M Si�+ + H2
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Although these defects may be responsible for a por-
tion of the electrically active interface states, the energy
spectrum of Pb centers is different from the dominant
hydrogen-induced defects [90], and quantitative studies
demonstrate that in some cases less than half of Nit

can be ascribed to Pb centers. The remaining interface
state density is apparently not EPR-active, and its
microscopic structure remains unknown.

3.3. The role of nitrogen

Beginning in the 1980s, many groups began adding
nitrogen to gate oxides as a way of reducing boron dif-
fusion from the pMOS gate into the channel, and to im-
prove low-field breakdown problems. For ultra-thin
oxides (�3 nm or less) nitrogen also is commonly used
to increase the dielectric constant and reduce the
direct-tunneling leakage current. Silicon oxynitride can
improve reliability by acting as a blocking barrier to
impurities such as B, Na+, H2O, OH, H, and H+, similar
to silicon nitride. However, it also has increased trap-
ping compared to SiO2 [91]. Earlier studies on relatively
thick nitrided oxides (�350 Å) found promising results
for negative bias stress [92] but for thinner oxides
(<100 Å) used in current technology the addition of N
to the gate oxide has a serious adverse effect on NBTI
[20,46,58,83], as illustrated in Fig. 3.

The nitrogen-enhanced NBTI has a lower activation
energy (�0.1 eV) compared to SiO2 (�0.2 eV) [20,83,93]
and also a shallower time dependence [83]. One possible
explanation for the enhancement is that nitrided oxides
contain more water [41].

Comparing pure SiO2 vs. oxynitride films (SiON), the
recovery of Vt during positive bias stress is also greater
for oxynitride [15,25,40]. If recovery is associated pri-
marily with detrapping of holes, this suggests that en-
hanced hole trapping is a significant contributor to the
nitrogen-enhanced NBTI [15,30,40].

Impurity effects reported for SiO2 (i.e., the influence
of boron or fluorine) are absent in nitrided oxide
[15,94] suggesting that perhaps different mechanisms
are involved. Similar to the case of pure oxide, approxi-
mately equal numbers of interface states and �fixed�
charge are seen in nitrided oxides [95].

Several theoretical attempts have been made to ex-
plain the microscopic role of nitrogen in NBTI, e.g.,
by calculating the energies for hole trapping at various
Table 2
Nitrogen-related reactions

Interface defect Reaction

Si–H + Si2–N–Si–(NxO3�x) Si–H + Si2–N–Si + h+ M Si� + S
alternatively, H+ + Si2–N–SiM

H2O + Si–Si–N3 Si–Si–N3 +H2O + h+ M Si–O–Si
(free H then reacts with Si–H to
defect structures. Analogous to the first reaction in Ta-
ble 1, the reaction in the first row of Table 2 considers
the reaction of holes and hydrogen with the silicon oxy-
nitride structure. Calculations indicate that the reaction
barrier decreases with the interfacial nitrogen concentra-
tion x [22]. Considered differently as proton trapping on
bonded nitrogen (second reaction in Table 1), the trap
depth increases with x [96]. Another reaction involving
water and a nitrogen vacancy (Table 2, second row)
has a lower reaction barrier [97]. A problem with all of
these results, in our opinion, is that the focus on the
reaction step ignores the fact that NBTI is diffusion lim-
ited. The results may be relevant to enhanced hole trap-
ping in nitrided oxides, however, the calculated reaction
barriers are very high, �6–9 eV, so that none of the reac-
tions would seem likely based on these results.

The focus of most work both theoretical (e.g., the
reactions in Table 2) and experimental concerns nitrogen
at the Si/SiO2 interface, since it is widely accepted that
this is the main contributor to NBTI [98]. Various pro-
cesses are used to try to control the nitrogen profile in
the oxide, to reduce the amount of N at the interface
and incorporate more at the top, near the gate
[41,72,94,99]. Fig. 12 shows the threshold voltage shift
dependence on nitrogen concentration, measured by sec-
ondary ion mass spectroscopy in a l.8 nm oxide
[22,93,96]. For thicker oxides (5.2 nm) NBTI depends
not only interfacial nitrogen, but also on the amount
of nitrogen incorporated throughout the bulk [58].
Along this line, it has been proposed that nitrogen in
the gate oxide may change the NBTI kinetics by inhibit-
ing the transport of hydrogen away from the Si/SiO2

interface [100].
EPR studies have shown that the density of Pb cen-

ters is greatly reduced in nitrided oxides, and that these
Si dangling bond centers can be completely eliminated
with high enough nitrogen treatment (Fig. 13) [101].
This result goes opposite to the trend of increasing
NBTI in nitrided oxides, strongly contradicting the
assumption that Pb centers are the origin of Nit. How-
ever, as shown in Fig. 14, negative bias stress on a
�1.7 nm oxynitride film caused depassivation of the Pb

centers, whose density in this case appeared nearly equal
to the NBTI-induced interface states [57]. At intermedi-
ate nitrogen dose, the ratio of Pb1 to Pb0 centers varies
and the spectrum changes slightly, suggesting that nitro-
gen causes structural changes at the interface [101,102].
Refs.

i+ + Si–NH–Si
Si2–NH+–Si

[22,96]

–NH+–N2 + H
leave dangling bond and molecular H2)

[97]
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Electrical measurements have shown that the energy
distribution across the Si band gap of NBTI-induced
interface states also varies with nitridation [103,104]. Ni-
trided oxides exhibit a higher interface state density near
the Si conduction band edge, whereas pure SiO2 exhibits
more states at mid-gap and close to the Si valence band
edge.
4. Applications

4.1. Circuit performance degradation

The negative threshold voltage (Vt) shift caused by
NBTI results in lowered drive current for p-FETs, since
the maximum drain current, for gate voltage equal to
source–drain voltage (Vg = Vds) is given approximately
by [19,105]

I sat ¼ leffCox
W
L
ðV g � V tÞh ð25Þ

for a transistor of width W, length L, and capacitance
Cox per unit area. (We consider only long-channel de-
vices in this discussion.) Typically h ranges from 2 for
long-channel devices to close to unity for short channels
(<1 lm). Differentiating Eq. (25),

DI sat

I sat
¼ h

�DV t

ðV g � V tÞ
ð26Þ

The frequency of a ring oscillator (a commonly used
measure of technology performance, comprising a
closed loop of an odd number of inverters) is

F / 1=s; s / CV dd

1

I satp

þ 1

I satn

" #
ð27Þ

where C is total input (gate) capacitance of each inver-
ter. The two terms in the expression for s describe the
rise and fall times. Differentiating,

DF
F

¼
DI satp

2I satp

� DC
C

ð28Þ

Ignoring the second term in Eq. (28) for the moment,
Eqs. (26) and (28) show that the frequency degradation
will be between 50% and 100% of the normalized Vt

shift. Eq. (26) assumes no change in the mobility, which
is not strictly correct. The low-field mobility in particu-
lar is degraded because of Coulomb scattering from
interface traps [19]. Thus, while these equations provide
useful heuristics, more detailed numerical circuit models
may be required for precise evaluation of the impact of
NBTI.

According to Eq. (26) the circuit impact will be greater
for lower operating voltage, because of the reduced
�head room� Vg–Vt [34]. This can be measured as a
change in the minimum circuit operation voltage (Vmin)
on product chips [106,107]. Other measures of perfor-
mance degradation (e.g., Fmax decrease) on product
chips have been shown to agree well with the trends
associated with NBTI, such as the dependences on time
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and temperature, weak dependence on channel
length (corresponding to product speed sorting), and
performance recovery after termination of the stress
[108,109].

The generated interface traps also cause a small but
measurable increase in the capacitance [19,34] and the
subthreshold swing [41,110]. The capacitance contrib-
utes to the frequency degradation (Eq. (28)), and causes
increased coupling of input to output, which has
been shown to be important for analog applications
[19,111]. For the most part, the increased Vt results in
lower off-state current, more than compensating the in-
creased subthreshold swing. However in some cases
the generated interface states can provide sufficient gen-
eration-recombination current to increase the off current
and power consumption [18,112].

4.2. New materials and structures: High-j and metal

gate p-FETS

In recent years, there has been a great effort to inte-
grate high dielectric constant (high-j) materials and
metal gates into FETs, in order to continue the scaling
of FETs for future technologies. The potential reliability
concerns for these new materials include NBTI as a
major issue. The introduction of new materials into
MOS technology also provides an opportunity to exam-
ine the materials dependence of reliability models and to
test the predictions of theory.

HfO2 is one of the leading high-j candidates for the
SiO2 replacement and several different metals such as
W, Re, TiN, TaN and are being explored for replacing
poly silicon gates. Since NBTI is an important transistor
reliability issue, NBTI in high-j/metal-gate p-FETs is
being investigated. It must be pointed out that the gate
dielectric consists of a stack with an interfacial oxide
plus HfO2 layer. Experimental studies performed at ele-
vated temperatures on HfO2/metal p-FETS show that
negative bias stressing causes Vt to increase with a
power-law dependence on stressing time which starts
to saturate at longer time [113–115]. DVt, is also ob-
served to increase with stressing bias and temperature.
Measurements show that NBTI induced DVt is accom-
panied by an increase in interfacial trap density (DNit),
increase in subthreshold swing (DS) and decrease in peak
transconductance (Dgm) [113]. These observations for
DVt, DNit, DS and Dgm are similar to those observed
for conventional p-FETs with oxide and poly silicon
gates.

Fig. 15 shows a comparison between NBTI data for
p-FETs composed of oxynitride/HfO2/W, oxynitride/
HfO2/TaN, and SiO2/poly-Si. Since NBTI data are mea-
sured at various stress voltages and dielectric thickness,
the comparison is made by plotting the increase in posi-
tive charge density (DQ = DVt · Cox) at fixed stress time
and temperature vs. stress field. DQ calculated in this
way assumes that the charge centroid is at the interface.
The stress field is approximated as Vg/tinv where tinv is
the equivalent oxide thickness calculated from the
capacitance of the FET in inversion, Cinv = 3.9e0/tinv.
This relation roughly takes into account the fact that
while the physical thickness for the high-j dielectric is
greater than that of SiO2 for the same tinv, most of the
electric field falls across the interfacial oxide layer. As
shown in Fig. 15, HfO2 and SiO2 stacks show similar
DQ at various stress fields within the experimental scat-
ter. It may be concluded that NBTI in high-j/metal-gate
p-FETs is similar to that in conventional oxide/poly
p-FETs at elevated temperature.

There are some reports on negative bias stressing ef-
fect at room temperature that indicate that DVt is domi-
nated by hole trapping at existing traps in high-j/metal
p-FETs. In other words, no new traps are created during
negative bias stressing and consequently interfacial trap
density does not change with stressing at room temper-
ature [116].

It is also interesting to investigate the NBTI effect in
SiO2/metal gate p-FETs. Only limited data are available
for this system. A comparison of SiON/poly and SiON/
W with tox � 1.6 nm found NBTI-induced DVt to be the
same for both poly silicon and W gates, for various
stress fields at 125 �C [48].

In addition to studies for p-FETs with high-j and
metal gates, there are limited studies investigating the
impact of silicon substrate orientation [104,117–119].
These studies have shown that NBTI is higher for
h110i orientation in comparison to h100i orientation.
This increase in NBTI attributed to higher density Si–
H bonds at the Si/SiO2 interface for h110i Si orienta-
tion. Aside from this, the majority of NBTI data for
these new materials are similar to those for conventional
p-FETs.
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5. Conclusions

NBTI is a combination of positive trapped charge
and interface state generation, resulting whenever nega-
tive gate bias is applied to a MOS structure. In spite of
having been first reported nearly half a century ago, and
notwithstanding a recent uptick in interest, many funda-
mental and practical questions remain.

Certain disagreements among published results,
e.g., as to whether Vt recovery involves Nit or Nf or
both, may well be a result of differences among the
samples used in various studies. Many such discrep-
ancies may be caused by different nitrogen content,
different oxide thickness, and/or other differences in
processing of the dielectric or the gate material. We
have not been able to completely root out these differ-
ences in this review. Since there are limited NBTI data
for different metal gates in the literature, it cannot
be concluded whether NBTI depends on the gate
material.

The detailed understanding of the relaxation mecha-
nism, whereby the Vt shift recovers when the stress
removed, is lacking. This is an area ripe for inves-
tigation. Deuterium isotope experiments could be use-
ful here, in order to distinguish hydrogen motion
from hole detrapping. Additional detailed studies of
the temperature and field dependence of recovery are
needed.

It is well established that the NBTI phenomenon is
not dependent on current flow through the oxide, in con-
trast to oxide breakdown. However, as oxides have be-
come thinner the increasing tunneling current can lead
to additional defect generation which may have charac-
teristics similar to NBTI, and which confuse the inter-
pretation. The effect of tunneling current in thin oxides
in causing Vt instability in thin oxides needs further care-
ful attention.

In the future, it may become more important to learn
to distinguish defect generation from hole trapping at
existing defects. For example, the relative contribution
of hole trapping may be larger at room temperature
compared to the usual accelerated stress conditions
[104]. This is also critically important for understanding
AC stress, and for developing a fundamental under-
standing of NBTI. The generation of interface states is
an essential part of NBTI—charge trapping alone, with-
out interface state generation, is considered a separate
and distinct phenomenon—but the trapped charge com-
ponent of NBTI is present and must be accounted for.
Some of the models currently proposed either do not
treat the trapped charge at all, or else assume a fixed
relation between trapped charge and interface states.
This is surely inadequate, so additional experimental
work should drive an improved theoretical and practical
understanding.
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