
 

 Abstract—This paper presents an analysis of two types of 
integrated charge pumps, Dickson and Fibonacci. The two 
circuits are compared in slow-switching conditions and at equal 
area occupation. A formula is developed for optimizing the 
capacitor sizes and improving the performance of the Fibonacci 
charge pump. The performance is evaluated with focus on 
voltage gain and output resistance and including the effects of 
parasitic capacitances. 

Index Terms—Voltage multiplier, charge pump, output 
resistance. 

I. INTRODUCTION 
N-CHIP generation of high voltages using only switches 
and capacitors is needed in many MOS-based systems 

like Flash memories. In such systems, two-phase DC-DC 
converters called charge pumps (CPs) transfer charge packets 
through a chain of capacitors from the power supply at a 
voltage VDD to a load at a higher voltage VOUT . The gain (G) is 
the ratio between the maximum open-circuit output voltage 
VOUT and the input voltage VDD. As power-supply voltages are 
progressively scaled down, designers strive to obtain higher 
gains without compromising energy efficiency or increasing 
area occupation. Hence, besides the popular Dickson CPs [1], 
it makes sense to explore alternate topologies such as 
Fibonacci CPs [2], which ideally are the two-phase CPs with 
the highest gain for a given number of capacitors [3], but are 
affected by non-idealities in monolithic implementations [4]. 

Since required gain and available silicon area are critical 
constraints for a designer, we decided to study how Dickson 
and Fibonacci CPs perform in conditions of equal gain and 
equal total area occupied by capacitors (which is the largest 
portion of an integrated CP). We assumed slow-switching 
conditions, where the switching period is much larger than the 
time constants due to capacitors and resistances of switches 
and sources. Under these conditions, we evaluated the CP 
performance in terms of equivalent output resistance ROUT, 
which in turn has an impact on energy efficiency. Therefore, 
in this paper, we discuss the trade-off between gain and output 
resistance for a given area, we show how to optimize the 
output resistance of Fibonacci CPs, and we compare Dickson 
and Fibonacci CPs in the case of ideal capacitors and switches. 
Finally, we introduce the effect of parasitic capacitances and 
we present results from theoretical analysis and numerical 
simulations. 
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Fig. 1. Schematic diagram of a 4-stage Dickson CP (N = 4, G = 5). 
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Fig. 2. Schematic diagram of a 3-stage Fibonacci CP (N = 3, G = 5). 

 

II. DICKSON AND FIBONACCI CIRCUITS 
In the Dickson CP in Fig. 1, when the switches are driven 

by two non-overlapping clock phases, each transfer capacitor 
(C1 to C4) is charged to the voltage of the preceding stage and 
then boosted by VDD to charge the next stage at a higher 
voltage. If non-idealities are neglected, the steady-state 
voltage increment of each stage is VDD and the resulting 
voltage gain of a CP with N stages is G = N + 1. 

On the other hand, the Fibonacci CP in Fig. 2 achieves the 
same gain as the one in Fig. 1 with fewer capacitors. In 
general, this two-phase CP topology has the maximum 
attainable gain for a given number of capacitors [3]. Each 
transfer capacitor (C1 to C3) is charged to the voltage of the 
preceding stage and then boosted by the voltage of the 
preceding stage increasing the voltage of the next stage. As a 
result, the ideal voltage gain of a Fibonacci CP with N stages 
is G = FN + 1, where FN is the N-th Fibonacci number, with 
F0 = F1 = 1 and Fi = Fi – 1 + Fi – 2 for i > 1. 

When a CP is connected to a load that dissipates power, its 
average output voltage drops to VOUT = G VDD – ROUT IOUT 
because of the non-zero output resistance and the average load 
current IOUT. At the same time, the CP energy efficiency is 
affected by the resistive losses given by PR = ROUT IOUT

2. In the 
next section, we compare the output resistance of Dickson and 
Fibonacci CPs without non-idealities. 
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III. TRADE-OFF BETWEEN OUTPUT RESISTANCE AND GAIN 
In the case of ideal linear elements, the procedure for 

evaluating the output resistance involves turning off the inputs 
(VDD), applying an ideal source to the output, and calculating 
the ratio between voltage and current of the applied source [5]. 
In a two-phase circuit with switches and capacitors the output 
resistance [6] is given by 

 

€ 

ROUT =
1
fs
⋅

(aci )
2

Cii =  1

N

∑  , (1) 

where fs is the switching frequency, N is the number of 
capacitors, Ci is the value of capacitor i, and aci = qi / qOUT is 
its charge multiplier factor, which is the ratio of the charge qi, 
transferred by capacitor Ci in a semi-period, and the charge 
qOUT delivered to the load. The charge multiplier factors are 
calculated by applying KCL to the circuit in phase 1 and 2, 
and by considering that in steady state each capacitor receives 
and delivers the same charge in each of the two phases. 

The charge multiplier factors for an N-stage Dickson CP are 
aci = 1 for i = 1 to N, therefore the output resistance is 

 

€ 

ROUT =
1
fs
⋅

1
Cii =  1

N

∑  . (2) 

If the available silicon area is given, then the sum of the 
capacitances CT = C1 + … + CN is a constant for the designer. 
In this case, the minimum (i.e. optimal) output resistance is 
obtained [7] when the value of each capacitor is 

 

€ 

Ci =
CT

N
 . (3) 

Under these conditions, the output resistance is inversely 
proportional to the frequency fs and to the total capacitance CT, 
while it grows quadratically with the gain G, as shown by the 
formula below (with G > 1). 

 

€ 

ROUT =
(G −1)2

fsCT

 (4) 

In the case of an N-stage Fibonacci CP, the charge 
multiplier factors are aci = FN – i for i = 1 to N, therefore the 
output resistance is 

 

€ 

ROUT =
1
fs
⋅

(FN− i )
2

Cii =  1

N

∑  . (5) 

If we consider a total capacitance CT and equal stage 
capacitances given by CT / N, the Fibonacci output resistance 
(5) grows faster than the Dickson’s (2) when the gain 
increases. As an example, if we choose fs = 20 MHz and CT = 
100 pF, the trade-off between gain and output resistance is 
shown in Fig. 3. The Fibonacci CP has the same output 
resistance as the Dickson’s for G = 2 and G = 3 (since the 
circuits are equivalent), while it has a progressively larger 
output resistance at G = 5 (N = 3), G = 8 (N = 4), G = 13 (N = 
5), and so on. Therefore, the Dickson CP has a better 
performance in these conditions. In the next section, we show 
how to select the values of the capacitors of the Fibonacci CP 
for minimizing its output resistance. 
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Fig. 3. Output resistance of Dickson and Fibonacci CPs as function of the 
gain, when fs = 20 MHz, CT = 100 pF, and when capacitors are equally sized. 

IV. OPTIMIZATION OF THE FIBONACCI OUTPUT RESISTANCE 
To minimize the output resistance of the Fibonacci CP for a 

constant total capacitance CT, we substitute C1 = CT – C2 – … 
– CN in (5) and we set the partials with respect to capacitors Ci 
equal to zero, which means 

 
  

€ 

∂ ROUT
∂ Ci

=
1
fs
⋅

(FN−  1)2

(CT −C2 −…−CN )2 −
(FN− i )

2

Ci
2

 

 
 

 

 
 = 0 (6) 

for i = 2 to N, and leads to 

 

€ 

Ci =
CT

FN+  1 −1
⋅FN− i  . (7) 

Therefore the optimal performance of an N-stage Fibonacci 
CP is not obtained when capacitances are equal (as in previous 
literature), but when they scale as the Fibonacci sequence with 
the largest capacitor next to VDD and the smallest next to the 
load. Fig. 4 shows examples of optimal capacitor sizes. 
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Fig. 4. Sketch of capacitors with optimal size for Dickson and Fibonacci CPs 
of equal area and gain (i.e. top G = 5, centre G = 8, bottom G = 13). 
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Fig. 5. Output resistance of Dickson and Fibonacci CPs as function of the 
gain, when fs = 20 MHz, CT = 100 pF, and when capacitors are optimized. 

In the condition of equation (7), the Fibonacci CP has the 
same trade-off between gain and output resistance as the 
Dickson CP with equally-sized capacitors and same area. This 
trade-off corresponds to (4) and is shown in Fig. 5. As a result, 
the two CPs have equal performance in these conditions. As 
an example, for a given switching frequency fs and a total 
capacitance CT, at G = 5, ROUT = 16 / (fs CT) for both; at G = 8, 
ROUT = 49 / (fs CT) for both; and at G = 13, ROUT = 144 / (fs CT) 
for both. 

V. ANALYSIS WITH PARASITIC CAPACITANCES 
One of the reasons why the performance of a real integrated 

CP deviates from the ideal is the unavoidable presence of 
parasitic elements modelled with a capacitor α Ci, connected 
between the bottom plate of Ci and the substrate, and with a 
capacitor β Ci, between the top plate of Ci and the substrate. 
When the top plate is a poly-silicon layer and the bottom plate 
is a diffused layer, typical values are α = 0.1 and β = 0.05. 

For the Dickson CP with parasitic elements [1] the gain is 

 

€ 

G =
N
1+ β

+1 , (8) 

the output resistance for equally-sized capacitors is 

 

€ 

ROUT =
N 2

(1+ β) fsCT

 , (9) 

and the relationship between output resistance and gain is 

 

€ 

ROUT =
1+ β
fsCT

⋅ (G −1)2  . (10) 

The performance does not depend on α, because the circuit 
can be built so that the bottom plates of all capacitors are 
alternately connected to ground and VDD without affecting the 
charge transfer through the CP. 

To calculate the voltage gain of the optimized Fibonacci CP 
with parasitic elements we followed the method proposed in 
[4] and based on [8], which is convenient because the number 
of equations is the same as for the ideal case. Two matrixes 
represent the circuit topology in each switching phase, while 
two other matrixes contain the values of capacitors (including 
parasitic elements) and the values of voltage sources. Node 
voltages and gain are calculated through conservation laws. 

By applying the method stated above, we calculated the 
analytical expressions of G as a function of α and β reported 
in Table І and the numerical values of G when α = 0.1 and β = 
0.05 listed in Table II. The gain with parasitic elements is 
lower than the ideal gain, because a portion of each charge 
packet transferred between stages is shared with the parasitic 
capacitors and wasted. 

To evaluate the effect of parasitic elements on the output 
resistance, we turned off VDD, connected a voltage source at 
the output, applied the method above one more time, and 
found the charge qOUT delivered by the voltage source during 
the switching period, the corresponding current, and thus the 
output resistance. The analytical expressions are shown in 
Table I and the numerical values in Table II. The output 
resistance with parasitic elements is lower than the ideal, 
because it is inversely proportional to the node capacitances 
that increase with the parasitics. 

Table III compares gain and output resistance of Fibonacci 
CPs with optimized capacitors and with equally-sized 
capacitors when parasitics are considered. The optimized CP 
has a better performance because the largest capacitors of the 
first two stages, which have the largest parasitics, are 
alternately connected to ground and VDD. 

TABLE I 
ANALYTICAL EXPRESSIONS OF GAIN AND OUTPUT RESISTANCE OF OPTIMIZED 
FIBONACCI CPS WITH PARASITIC CAPACITANCES 

N G ROUT 

1 

€ 

2+ β
1+ β

 

€ 

1
fsCT

⋅
1

1+ β
 

2 

€ 

3+ β
1+ β

 

€ 

1
fsCT

⋅
4

1+ β
 

3 

€ 

α(1+ β) + (2+ β)(5+ 2β (4 + β))
(1+ β)(2+α + (5+α)β + 2β 2)

 

€ 

4
fsCT

⋅
2α(1+ β) + (2+ β)(4 + 5β)
(1+ β)(2+α + (5+α)β + 2β 2)

 

4 

€ 

48+α (1+ β)(8+ 5β) +

+β (4 + β)(35+ 6β (4 + β))
 

 
 

 

 
 

(3+ 2β)(2+ 3β)(1+ β (3+ β)) +

+α 2 (1+ β)2 +α(1+ β)(7+ β (16+ 7β))

 

 
 

 

 
 

 

€ 

7
fsCT

⋅

42+ 2α 2 (1+ β) +α(19+ 3β (12+ 5β))+
+β (109+ β (80+17β))

 

 
 

 

 
 

(3+ 2β)(2+ 3β)(1+ β (3+ β))+
+α 2 (1+ β)2 +α (1+ β)(7+ β (16+ 7β))

 

 
 

 

 
 

 

TABLE II 
NUMERICAL VALUES OF GAIN AND OUTPUT RESISTANCE OF OPTIMIZED 
FIBONACCI CPS WITH PARASITIC CAPACITANCES 

N G 
ideal 

G 
calculated 

G 
simulation 

ROUT 
ideal 

ROUT 
calculated 

ROUT 
simulation 

1 2 1.952 1.952 500 Ω 476.2 Ω 476.2 Ω 

2 3 2.905 2.905 2 kΩ 1.905 kΩ 1.906 kΩ 

3 5 4.514 4.514 8 kΩ 7.201 kΩ 7.204 kΩ 

4 8 6.601 6.601 24.5 kΩ 20.46 kΩ 20.46 kΩ 

5 13 9.119 9.119 72 kΩ 52.04 kΩ 52.05 kΩ 

6 21 11.81 11.81 200 kΩ 118.2 kΩ 118.1 kΩ 

The numerical values are calculated using the analytical expressions and then 
verified through Spectre simulations with ideal switches. The values 
correspond to α = 0.1, β = 0.05, fs = 20 MHz, and CT = 100 pF. 
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TABLE III 
GAIN AND OUTPUT RESISTANCE OF FIBONACCI CPS WITH EQUALLY-SIZED 
CAPACITORS AND WITH OPTIMIZED CAPACITORS 

N G 
equally-sized 

G 
optimized 

ROUT 
equally-sized 

ROUT 
optimized 

1 1.952 1.952 476.2 Ω 476.2 Ω 

2 2.905 2.905 1.905 kΩ 1.905 kΩ 

3 4.294 4.514 7.631 kΩ 7.201 kΩ 

4 5.498 6.601 20.77 kΩ 20.46 kΩ 

5 5.560 9.119 43.82 kΩ 52.04 kΩ 

6 4.504 11.81 70.19 kΩ 118.2 kΩ 

The values correspond to α = 0.1, β = 0.05, fs = 20 MHz, and CT = 100 pF. 

Since the parasitic elements reduce both the gain and the 
output resistance of the Dickson and the optimized Fibonacci 
CPs, we compared the two CPs by considering the ROUT-G 
trade-off shown in Fig. 6. The Dickson CP has a better 
performance than the Fibonacci CP when G > 3, because the 
Dickson output resistance is lower at any given gain. 

Fig. 7 shows an example of current-voltage characteristic of 
the two CPs with parasitic capacitors. The 4-stage Dickson CP 
has a gain G = 4.8 and an output resistance ROUT = 7.6 kΩ; the 
3-stage Fibonacci CP has a lower gain G = 4.5 and a lower 
output resistance ROUT = 7.2 kΩ; and finally the 3-stage 
Dickson CP has a gain G = 3.9 and an output resistance ROUT 
= 4.3 kΩ. 
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Fig. 6. Impact of parasitic capacitances on the ROUT-G trade-off of the Dickson 
CP and the Fibonacci CP with optimized capacitors when α = 0.1, β = 0.05, 
fs = 20 MHz, and CT = 100 pF. 
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Fig. 7. Output voltage as a function of output current IOUT with parasitic 
capacitance for Dickson CPs with N = 3 and N = 4 and Fibonacci CPs with N 
= 3 when α = 0.1, β = 0.05, fs = 20 MHz, and CT = 100 pF. 

0!

10!

20!

30!

40!

50!

60!

0! 2! 4! 6! 8! 10! 12!

R
O
U
T
  

(k
"

)!

Voltage Gain G!

Dickson!

Fibonacci!

 
Fig. 8. Impact of parasitic capacitances on the ROUT-G trade-off of the Dickson 
CP and the Fibonacci CP with optimized capacitors when α = β = 0.05, fs = 20 
MHz, and CT = 100 pF. 

The Dickson CP has a better performance also if we assume 
β = 0 or α = β. As an example, the ROUT-G trade-offs when top 
and bottom plate parasitics are the same (i.e. α = β = 0.05) is 
shown in Fig. 8. The reduction of the bottom-plate parasitic 
capacitance results in an increased gain of the Fibonacci CP. 
The performance of the two CPs is closer at G = 5, while at 
higher gains the performance of the Dickson CP is still better. 

VI. CONCLUSION 
In this paper, we presented a comparison of Dickson and 

Fibonacci CPs. We derived a simple formula to optimize the 
capacitor sizes of the Fibonacci CP. Then we compared the 
optimized Fibonacci CP with the Dickson CP by considering 
the trade-off between output resistance and gain in slow-
switching conditions and at equal area occupation. We showed 
that in ideal conditions the two CPs have the same 
performance, while the Dickson CP has a better performance 
when parasitic capacitances are included, especially for high 
gains. However, the optimization of the capacitor sizes makes 
the Fibonacci CP more competitive. The simulation results are 
in good agreement with the presented analytical description 
that can facilitate the choices of the designer. 
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