
A Robust GF (p) Parallel Arithmetic Unit for Public Key Cryptography

Santosh Ghosh Monjur Alam Indranil Sen Gupta Dipanwita Roy Chowdhury
Department of Computer Science and Engineering

Indian Institute of Technology
Kharagpur - 721302

e-mail: {santosh, monjur, isg, drc}@cse.iitkgp.ernet.in

Abstract

This paper presents the architecture and FPGA imple-
mentation of a robust GF (p) parallel arithmetic unit. The
most efficient modular multiplication, inversion and divi-
sion units greatly reduce the clock cycles requirement for
point operations applicable to Elliptic Curve Cryptography.
The parallel arithmetic unit helps to achieve a high speed
up in cryptographic applications. The architecture can re-
sist the cryptographic timing attack. Integrated input and
output interface units provide lower bandwidth requirement
to plug in the architecture with automated cryptographic
systems. The design exhibits its elegance among competi-
tive architecture with respect to throughput and robustness.

Keywords: GF(p) Arithmetic Operators, Elliptic Curve
Cryptography, Timing Attack, FPGA Implementation

1 Introduction

In the present day of enormously increasing stabile
and mobile communications data is normally transmitted
through shared insecure channels. To protect the confi-
dential data in the field of e-commerce transactions, sci-
entific and military purposes cryptography become utmost
important and ambitious issue. Several cryptosystems like
DES, RSA, AES, ECC have been developed to protect the
confidential data. Bulk data are generally encrypted using
block cipher (DES, AES), where both parties share the same
common secret key. However, the establishment and ex-
change of these secret keys is normally achieved via public
key cryptosystems. RSA and ECC are two mostly secured
such public key cryptosystems. Generally, public key cryp-
tosystems are more computationally intensive and slower
than their private key counterparts [1]. Field Programmable
Gate Array (FPGA) is an ideal platform to provide hard-
ware acceleration to the cryptographic applications. The
most effective advantage of FPGA, compared to ASIC, in

cryptography is that they can be re-programmed to perform
the more computationally intensive operations of a range of
ciphers depending on the security and application require-
ments.

Elliptic Curve Cryptography (ECC) was independently
proposed in the mid-eighties by Victor Miller [2] and Neil
Koblitz [3] as an alternative to the existing public key sys-
tem, RSA. ECC has quickly established itself as the fi-
nal choice in smart cards, credit cards, mobile phones and
palm-top devices due to its significant power to provide
equivalent security compared to existing public key cryp-
tosystems at greatly reduced key size. ECC is mathemati-
cally secure as no subexponential time algorithm is known
to date to solve the discrete logarithm problem on a suitably
chosen elliptic curve. The advantages offered by ECC could
be important in the environments where processing power,
storage and bandwidth are constrained. It is estimated that
the security level of 160 and 224 bits ECC cryptosystem
is equivalent to the 1024 and 2048 bits RSA respectively
[9, 10].

Two types of Finite Fields are generally used in ECC.
Those are Extended Binary Field that is also known as Ga-
lois Field GF (2k) and Finite Field over large Prime that is
called GF (p). Unlike GF (2k), a very few hardware im-
plementation of ECC on GF (p) has been reported in the
literature to date. The hardware complexity to implement
ECC in GF (p) is little bit higher than that of in GF (2k).
However, the advantage of GF (p) over GF (2k) is that, a
k-bit GF (p) arithmetic unit can operate on any inputs form
0 to 2k − 1 without any reconfiguration. Again the recon-
figuration of GF (2k) hardware could be implemented for
some selective values of k, say reconfigurable hardware for
k = 160, 192, 224 which can process only 160, 192 and
224-bit data. But in case of GF (p) the k-bit arithmetic unit
is capable to process any i-bit data where 1 ≤ i ≤ k.

The proposed design is a parallel GF (p) arithmetic unit.
The architecture is designed to perform the most efficient
GF (p) modular multiplication, inversion and division al-
gorithms in binary number system. It has been observed

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

that such algorithms give the most efficient design with re-
spect to both throughput and area. The proposed arithmetic
unit performs all GF (p) addition/subtractions, multiplica-
tions and inversion/divisions in 1, k and 2k clocks. Hence
the design provides the robustness against any kind of data
dependent timing attacks. The proposed design is mainly
focussed to perform GF(p) Elliptic Curve (EC) operations
directly in affine coordinates. Division is the most costly
operation, which is essential to perform GF(p) EC group op-
erations in affine coordinates. The current paper presents an
efficient finite field invertor/divider unit, which can compute
both the respective operations in twice clocks of the length
of p. Intelligent loading and multiplexed display units have
been integrated into the architecture to suit the target appli-
cation.

The outline of this paper is as follows: In section 2 the
design overview has been presented focussing on the de-
sign issues of the proposed work. Section 3 deals with the
algorithms and architectures of different GF (p) operations
those are useful on ECC. The architecture of GF (p) paral-
lel arithmetic unit has been detailed in section 4. Section 5
deals with comparisons and analysis of the results. Finally
section 6 concludes the work.

2 Design Overview

The implementation has been done by following conven-
tional FPGA design abstraction. To achieve the final goal,
maintained in the following subsection, first we set the input
output specifications and sketched concurrent communicat-
ing blocks essentially be present at the highest architectural
level of abstraction. Then for each of the individual blocks
we have picked out the most efficient algorithms and logics,
and mapped them into the most suitable architecture to get a
optimum GF (p) parallel arithmetic unit with respect to the
conflicting performance parameters of robustness, through-
put, area and power.

2.1 Motivation and Goal of the Design

Elliptic curve cryptosystems over GF (p) have received
very little attention to date due to the seemingly more attrac-
tive finite field GF (2k). However, our motivation goes to
the finite field GF (p) as unlike GF (2k), no reconfiguration
logic is required for GF (p) processor to process any input
from 0 to k bits long. Örs et. al.[4] presented an elliptic
curve processor effectively applicable to Montgomery do-
main numbers for elliptic curve point operations on projec-
tive coordinate. To perform point operations they focused
mainly on modular multiplication and disregarded modular
inversion and division operations. The GF (p) ALU for en-
cryption processor, reported by Daly et. al.[5], can perform
point operations in affine as well as projective coordinates

with a comparable performance where inputs and outputs
are assumed to be represented in Montgomery domain. In
this paper we propose a GF (p) parallel arithmetic unit for
natural binary number system that is effectively applicable
for elliptic curve point operations regardless of point repre-
senting coordinates with an excellent performance.

2.2 Design Constraints

The present subsection gives an overview of the con-
straints under which the design is performed. The design
strategies adopted to achieve the constraints are detailed in
the sections 3 & 4. The architecture has been developed in
a step by step method to achieve an efficient parallel GF (p)
arithmetic unit where p is assumed to be represented in nat-
ural binary format. The target application being elliptic
curve schemes where the constraints of the design encom-
passes both throughput and power. The robust design archi-
tecture and novel implementation of GF (p) multiplier and
inversion/division units with proper freezing logic of inter-
nal registers helps to reduce the operational power without
imposing any penalty of throughput. Thus the design could
resist any kind of timing attacks. The input and output in-
terface units and controller logics are designed carefully to
make the architecture easily applicable to smart card like
mobile devices with very less number of input/ouput con-
nections. The lower pin count of the design also helps to re-
duce the power requirement to drive the device. The archi-
tecture of every arithmetic functional units are designed and
optimized separately that effectively reduce the total area of
the design.

3 Modular Arithmetic Operations and Re-
spective Architectures

To perform public key cryptographic operations like
point addition and point doubling operations on elliptic
curve, mostly require addition, subtraction, multiplication,
inversion and division in GF (p). The following subsections
carry the algorithm and efficient architecture for individual
arithmetic operations.

3.1 GF(p) Addition

The modular addition operation adds two operands, A
and B. (A, B) ∈ [0, p - 1] and subtracts the modulus p from
the sum if A + B ≥ p. The architecture of k-bit GF (p) adder
is illustrated in Fig.1.

The architecture consist of two k-bit carry propagation
adder. The first adder performs A+B and the second adder
is used to perform 2’s complement subtraction by applying
inverted p and 1 as its carry in input. A two channel to one
channel multiplexer is used to select the final k-bit result

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

A

B

p

+

+

(
A
+
B
)
mod p

0

1

0

1

Figure 1. GF (p) Adder unit

either from the first (A + B) or second (A + B − p) adder
depending on their carry out values.

3.2 GF(p) Doubling

The modular doubling operation, 2A mod p of operand
A ∈ [0, p− 1], left shifts the operand A by one bit and sub-
tracts the modulus p from the temporary result if 2A ≥ p.
Fig.2 depicts the architecture of k-bit modular doubling
unit. The architecture works almost same as modular ad-
dition operation. The 2A operation is done by a one bit
hard left shifter that produces k+1 bit output from k bit in-
put. Finally the values 2A and 2A − p are multiplexed to
give the correct result.

A

p

+

2
A mod p

1

0

1

<<

Figure 2. GF (p) Doubler unit

3.3 GF(p) Subtraction

To perform modular subtraction, input B is bitwise in-
verted and added to input A with carry in 1. If the result is
negative (i.e. the carry-out is low) then the modulus is added
to produce an output in the range [0, p− 1]. An architecture
to perform GF (p) subtraction is illustrated in Fig.3. In this
architecture A − B is computed by the first adder as 2’s
complement subtraction method. At the second adder the
result of the first adder is simply added with the modulus p.
The correct result is A−B if A ≥ B or A−B+p if A < B.
The correct result is selected depending on the carry out bit
of the first adder. The architecture performs modular sub-
traction without the cost of k-bit magnitude comparator to
decide weather A ≥ B or not.

3.4 GF(p) Multiplication

Various types of GF (p) multiplication algorithms have
been reported in literature. Montgomery in 1985 [6] pro-

A

B

p

+

+

(
A
-
B
)
mod p

1

0

1

0

Figure 3. GF (p) Subtractor unit

posed one efficient modular multiplication without trial di-
vision. This algorithm works on the numbers represented in
Montgomery domain and it produces the result in the same
domain. The conversions from binary to Montgomery of the
operands and Montgomery to binary of the result degrade
the overall performance of GF (p) multiplication in binary
number system. In our design Interleaved Multiplication
Algorithm[7, 8] has mapped into the architecture. The al-
gorithm is given in Algorithm1 and respective hardware
architecture is shown in Fig.4.

————————————————————
Algorithm 1: Interleaved Multiplication
————————————————————
Input: p and A, B ∈ [0, p - 1]
Output: AB mod p
————————————————————
1. T = 0
2. For i = 0 to k - 1 do
3. T = 2T + A.Bk−1−i

4. T = T mod p
5. End For
6. Return T
————————————————————

The time complexity of the algorithm is exactly k clock
cycles, where k is the maximum bit length of applied p.
The algorithm is carefully mapped into the architecture that
eliminates the trial division by p in it’s step 4. In the ar-
chitecture, the step 3 and step 4 of the algorithm are imple-
mented by instantiating one GF (p) doubling unit followed
by one GF (p) adder unit. A mod-k down counter that gen-
erates the control signals of the multiplier unit, effectively
implements the functionality of step 2 and step 6 of the al-
gorithm. The counter output (i) is used to select Bi (i.e.
Bk−1−i, according to the algorithm) from k-bit B at every
clock and the AND array is used to perform A.Bi. The final
result of the operation comes out through output buffers at
(k + 1)th clock.

3.5 GF(p) Inversion and division

The modular multiplicative inverse A−1(mod p) of an
integer A exists if and only if A and p are relatively prime,
that is, gcd(A, p) = 1. One of the efficient modular inversion
algorithms is Binary Inversion Algorithm, shown in Algo-
rithm 2. The step 2 of the algorithm runs iteratively, and

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

B
i

A

reg T

A
.
B
i

p
R

Mod
-
k down

counter

B to B
i

selector

B

i

Start
Clk

GF
(
p
)

doubling unit

GF
(
p
)
adder

unit

1

0

Figure 4. GF(p) interleaved multiplier unit

proceeds towards the goal. At every iteration either u or
v is reduced by at least one bit length. It follows that the
total number of iterations of step 2 is at most 2k, where k
is the maximum bit length of p and a. In [5] the authors
proposed the outline of modular division operation using
a modular inversion followed by a modular multiplication
operation. The binary modular inversion algorithm (Algo-
rithm 2) can easily be modified to perform modular division
b/a = ba−1. To obtain b/a (mod p) using this algorithm we
have to initialize the x1 variable in step 1 by b instead of 1.

———————————————————————
Algorithm 2: Binary Inversion in GF (p)
———————————————————————
Input: p and a ∈ [0, p - 1]
Output: a−1 mod p
———————————————————————
1. u = a, v = p, x1 = 1, x2 = 0
2. while u 6= 1 and v 6= 1 do
2.1. while u is even do
2.2.1. u = u/2
2.2.2. if x1 is even then x1 = x1/2 else x1 = (x1+p)/2
2.3. end while
2.4. while v is even do
2.5.1. v = v/2
2.5.2. if x2 is even then x2 = x2/2 else x2 = (x2+p)/2
2.6. end while
2.7. if u ≥ v then u = u − v, x1 = x1 − x2

2.8. else v = v − u, x2 = x2 − x1

3. end while
4.1. if u = 1 then return x1 mod p
4.2. else return x2 mod p
———————————————————————

The architecture works as follows. The d/i control line
is used to select either of division and inversion operations.
This signal helps to load the x1 register by b or 1 at the
beginning of the operation. The Start signal controls the
loading operation of u, v, p, x1 and x2 registers through
multiplexers either by their initial values or by the inter-
mediate results at the beginning of every clock. There are
two comparators to compare the present values of u and v

p

u

v

x
1

x
2

0
 1

0

1

0

1

0

1

0

1

Clk
Start

1

0

u
==
1

v
==
1

Step
1
v
Step
1
u

Step
2

0
 1
 0
 1
 0
 1

0

b
p
a

R

u
[
0
]
v
[
0
]

0
1

1

d
/
i

Mod
2
k

down

counter

Figure 5. GF (p) inverter and divider unit

registers with 1. If any one of the comparator outputs be-
come true then at the next clock all internal registers are
freezed as the final result is available in the x1 or x2. The
blocks Step-1u and Step-1v of the architecture perform the
operations within two inner while loop of the algorithm.
The operations defined in step 2.7 and 2.8 of the algorithm
is performed by the Step-2 block of the architecture. De-
sign details of these two blocks are shown in Fig.6. Step-

u
 v
 x
2
x
1

0
1
 0
 1
 0
1
 0
 1

u
 v

u
_
out
 v
_
out
 x
1
_
out
 x
2
_
out

p

GF
(
p
)

subtractor

(
x
2
-
x
1
)

GF
(
p
)

subtractor

(
x
1
-
x
2
)

x
1
 x
2

0
1
 0
1

0
1

u
>>
1
 x
1
>>
1

+

t
>>
1

p
 x
1
u

x
1

u
[
0
]
 x
1
[
0
]

u
_
out
 x
1
_
out

(a)
 (b)

Figure 6. (a) Step-1 and (b) Step-2 block of
Fig.5

1u (Fig.6a) performs divide-by-2 operation by one bit hard
right shift. It uses the odd/even detector signals (u[0] and
x1[0]) to select either the modified or old values of corre-
sponding variables at every clock. For the Step-1v we in-
stantiate the same module by replacing the u, x1, u out and
x1 out by v, x2, v out and x2 out respectively.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

Step-2 module (Fig.6b) consists of two k-bit magnitude
subtractors, two k-bit GF (p) subtractors and four k-bit 2
× 1 multiplexers. Two magnitude subtractors concurrently
perform u − v and v − u and at the same time two GF (p)
subtractor perform (x1 − x2) mod p and (x2 − x1) mod p.
The borrow out signal of v−u operation, that says whether
the current value of u ≥ v, used to select its final output.

The binary inversion/division algorithm may not take ex-
actly 2k number of clock cycles for all input values of a and
p. In order to resist cryptanalysis timing attack each op-
eration should take the same (maximum) number of clock
cycles. Therefore at (2k+1)th clock the final result is avail-
able at the inverter/divider output. In the inverter/divider ar-
chitecture this is achieved by the cost of one mod-2k down
counter, one dlog

2
2ke-input OR gate and an active low en-

abled buffer. The output of the OR gate enables the active
low output buffer to pass the result from x1 or x2 register to
its output port. To resist the power analysis attack the archi-
tecture could be modified by following ways. Eliminate the
freezing logic of u, v, x1 and x2 registers, so that they are
updated at every clock. Integrate one more temporary reg-
ister to hold the result from its actual time of generation to
the 2k clocks. Thus the power distribution of this modified
architecture will not leak any information regarding a or b.

4 The GF(p) parallel arithmetic unit

The top level architecture of proposed GF (p) parallel
arithmetic unit, illustrated in Fig.7, combines modulo adder,
subtractor, multiplier and invertor/divider units listed in pre-
vious section. The input and output interface blocks, the
result multiplexing block and the control logics have been
made in-built to the architecture. The internal processing
word size of the architecture is k bits long. The 160-bit
FPGA implementation on Sparatan-3 board is efficiently in-
terfaced with the parallel port of the computer.

GF
(
p
)
adder

unit

GF
(
p
)

multiplier

unit

GF
(
p
)

subtractor

unit

GF
(
p
)

inversion and

division unit

Result

multiplexer

block

Output

display

block

Load

Input

block

Controller

Logic

DataIn

[
3
:
0
]

ctl
[
2
:
0
]

clk

reset

DataOut

[
3
:
0
]

clk out

Operand

Registers

S
[
1
:
0
]

done

Figure 7. Top Level Architecture of GF (p) par-
allel Arithmetic Unit

4.1 Input Output interface

The present design has 4-bit I/O to aid in the interface
with the conventional parallel port of computer. The impor-
tant blocks are Load Input Block and Output Display Block
which performs the I/O interface between the external part
of the design and actual processing blocks of the chip.

>>
4
reg
-
p

>>
4
reg
-
a

>>
4
reg
-
b
DataIn

[
3
:
0
]

clk
 reset

ctl
[
0
]

ctl
[
2
]

ctl
[
1
]

p

a

b

Figure 8. Load Input Block

The Load Input Block (Fig.8) receives the data from the
4-bit DataIn port at each clock and loads the operands and
modulus to the respective registers. The registers are de-
signed as 4 bits right shift per system clock fashion. The
flow of data from DataIn port to these registers are con-
trolled by the 3-bit control input lines. If maximum size of
operands and modulus is k bits long then it takes k/4 sys-
tem clocks to load one operand.

The Output Display Block (Fig.9) despatches the result
of operations from the k-bit long output register to the 4-bit
DataOut port. This register works in two different modes,
load and shift. At every clock if done signal is high then
it is loaded by a new result, available to the output channel
of Result Multiplexer Block (Fig.10), otherwise it shifts its
present content by 4 bits toward right.

4.2 Result Multiplexer Block

Result Multiplexer Block, shown in Fig. 10, consist of
four k-bit temporary registers and a four channel to one
channel sequential multiplexer, where each channel is k bits
long. Every register is dedicated to hold the result of a par-
ticular functional arithmetic unit. There are two bit control
signals, s[1] and s[0], generated by the control logic, are
used for controlling the sequential selection of the individ-
ual registers output channels to its output port.

4.3 Controller Logic

The state transition diagram of Controller Logic is shown
in Fig. 11. It generates the Start signal for individual oper-

>>
4
output register

DataOut

clk

r

done

4

Figure 9. Output Display Block

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

r
1

r
2

r
3

r
4

0

3

2

1

S
[
1
:
0
]

r

Figure 10. Result Multiplexer Block

reset

load

res

div
/

inv
mult
sub
add

wait

load

displ

ay

c
t

l

c
t
l

c
t
l

a
d

 s
d

m
d

d
/
i
-
d

s

d
o
n
e

s
t
a

r
t
-
a

d
d

start
-
sub

s
t
a
r
t
-
m
u
l
t
start
-
d
/
i

c
t
l

 c
t
l

Figure 11. State diagram of controller logic

ator units and controls data flow among other active blocks
of the design. This controller logic works as the master con-
troller of the chip that generates the control signals for block
level data communication. The data flow through internal
data paths inside the individual active functional blocks are
controlled by its own controller logic.

The Start signal of individual arithmetic units is gener-
ated by controller logic at a specific clock cycle depending
on the user choice of current operation specified by the three
control input (ctl[2:0]) lines. The controller generates s[1]
and s[0] signals for Result Multiplexer Block and done sig-
nal for Output Display Unit. These three control lines also
go out from the chip as output control lines. The done sig-
nal helps the user to detect valid output data and s[1] and
s[0] guide to inform the operation for which present result
is coming out.

5 Experimental Results

The architecture is implemented by Verilog. The synthe-
sis of the top module has been done using Xilinx ISE 7.1i
tool where the target device was Spartan-3 xc3s5000 FPGA
with speed grade -4 and package fg900. The post-synthesis,
post-map and post-place and route results for the top ar-
chitecture are presented in Table 1. The behavioral, post-
translate, post-map and post-place & route verilog mod-

els of the design has been verified using Modelsim XE III
6.0a simulator. And finally the design is implemented on
Spartan-3 xc3s5000-fg900 board and tested by using the
Logic Analyzer.

Table 1. Results for GF (p) parallel arithmetic unit on
Xilinx Sparatan-3 xc3s5000-5-fg900 FPGA

———————————————————————
word length F(MHz) #gate #slice %device
———————————————————————

32-bit 98.88 17.8K 1069 3%
64-bit 80.82 35.3K 2098 6%
96-bit 68.54 54.7K 3178 9%

128-bit 52.40 71.7K 4184 12%
160-bit 45.16 90.3K 5289 15%
192-bit 43.53 107.6K 6307 18%
224-bit 39.70 126.8K 7328 21%
256-bit 37.33 149.2K 8830 26%
384-bit 30.00 222.9K 13253 39%
524-bit 24.40 303.3K 18060 54%

———————————————————————

Table 2. Execution time for different operations in various
bit length GF (p) parallel arithmetic unit
———————————————————————
Word length Execution time (µs)

—————————————————
Interleaved binary point point

multiplication division addition doubling
(k clk) (2k clk) (4k+5 clk) (5k+7 clk)

———————————————————————
32-bit 1.60 3.20 6.65 8.35
64-bit 3.20 6.40 13.05 16.35
96-bit 4.80 9.60 19.45 24.35

128-bit 6.40 12.80 25.85 32.35
160-bit 8.00 16.00 32.25 40.35
192-bit 9.60 19.20 38.65 48.35
224-bit 11.20 22.40 45.05 56.35
256-bit 12.80 25.60 51.45 64.35
384-bit 19.20 38.40 77.05 96.35
524-bit 26.20 52.40 105.05 131.35

———————————————————————

Using this parallel arithmetic unit point addition in affine
coordinate can be performed by only one modular division,
two modular multiplications and 6 addition/subtraction op-
erations and that takes exactly 4k + 5 clock cycles, as
one subtraction can be performed concurrently with some
other operations. Similarly, point doubling can be per-
formed by only one division, three multiplications and 8 ad-
dition/subtraction operations and it requires exactly 5k + 7
clock cycles. Required execution time for different essen-
tial operations in ECC are listed in Table 2. The results are
acquired from the Sparatan-3 xc3s5000-5-fg900 device at a

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

frequency 20MHz. It is easily be evidenced that at the max-
imum clock frequency listed in Table 1. the time required
for these modular operations of different bit length will be
much less than that of in Table 2.

A performance comparison is given in Table 3 with two
other GF (p) ALU those are already reported in literature.
In [4] the systolic multiplier reported by Örs et al. performs
modular operations in Montgomery domain, applicable to
projective coordinate ECC point operations, is operated at
clock frequency 91.3 MHz. It takes 74 and 70 µs per point
addition and point doubling respectively for a 160-bit de-
sign.

Table 3. Clock cycles and execution time comparison for ECC
point operations in GF (p)

———————————————————————
word length = 160

Operation #clock Cycles Execution Time (µs)
Örs Daly Present Örs Daly Present

———————————————————————
Multiplication 3k+4 k+1 k 5.62 8.05 8.00
Inversion 9/2k2+6k 2k 2k 1350 16.00 16.05
Division 9/2k2+9k+4 3k+1 2k 1356 20.05 16.05
Point Addition 42k+56 5k+9 4k+5 74 40.45 32.25
Point Doubling 40k+38 6k+12 5k+7 70 48.60 40.35
———————————————————————

The GF (p) ALU, listed in [5], performs Montgomery
domain arithmetics effectively useful for affine (or projec-
tive) coordinates, is operated at 20MHz clock frequency. It
takes 40.45 and 48.60 µs per point addition and point dou-
bling respectively in affine coordinate for 160-bit design.

The 160-bit design presented here, operating at 20 MHz
on the Sparatan-3 xc3s5000-5-fg900 FPGA will perform
the same operations in 32.25 and 40.35 µs respectively
and at its highest operating frequency (45.16 MHz) it takes
14.28 and 17.87 µs respectively. In this design inputs and
outputs are represented in natural binary numbers, so that it
saves the input output domain conversion overhead.

6 Conclusion

The proposed GF (p) parallel arithmetic unit is effec-
tively applicable to perform all necessary modular opera-
tions for an ECC in affine (or projective) coordinates. The
present design takes 8k + 14 and 14k + 7 clock cycles for
respective point doubling and point addition in projective
coordinate, where point operations are mainly based on the
modular multiplication. The design is absolutely fulfilled
authors initial goals that ware targeted in section 2.1. The
post synthesis and post place and rout results have indicated
that its implementation various bit lengths are trustfully ap-
plicable to ECC schemes those are competitive with much

higher bit length RSA schemes. It is recommended to use
latest FPGA (Virtex 4 or Virtex 5) to achieve better through-
put using the present architecture. The design performs di-
rectly on natural binary numbers that will be helpful to ex-
hibit its elegance in cryptographic applications.

References

[1] B. Schneier, Applied Cryptography, second ed., Wi-
ley, New York, 1996.

[2] V. S. Miller, Use of elliptic curves in cryptography,
Adv. Cryptogr. Crypto’85, 1985, pages 417–426.

[3] N. Koblitz, Elliptic curve cryptosystems, Math. Comp.
Vol. 48, 1987 pages 203–209.

[4] S. B. Örs, L. Batina, B. Preneel, J. Vandewalle, Hard-
ware implementation of elliptic curve processor over
GF(p), Proceedings of the Application-Specific Sys-
tems, Architectures, and Processors ASAP, 2003, pages
433-443.

[5] A. Daly, W. Marnane, T. Kerins, E. Popovici, An FPGA
implementation of a GF (p) ALU for encryption pro-
cessors, Microprocessors and Microsystems, Vol. 28,
2004, pages 253–260

[6] P. L. Montgomery, Modular multiplication without trial
division, Math. Comput. Vol. 44, 1985, pages 519–
521.

[7] G. R. Blakley, A computer algorithm for the product AB
modulo M, IEEE Transactions on Computers, Vol. 32,
No. 5, pages 497–500, May 1983.

[8] K. R. Sloan, Jr. Comments on ”A computer algorithm
for the product AB modulo M”. IEEE Transactions
on Computers, Vol. 34, No. 3, pages 290–292, March
1985.

[9] I. Blake, G. Seroussi, N. Smart, Elliptic Curves in Cryp-
tography, London Mathematical Society Lecture Note
Series 265, Cambridge University Press, 2000.

[10] D. Hankerson, A. Menezes, S. Vanstone, Guide to El-
liptic Curve Cryptography, Spinger, United States,
2003.

[11] A. Daly, W. Marnane, T. Kerins, E. Popovici, Fast
modular division for application in ECC on reconfig-
urable logic Field-Programmable Logic and Appli-
cationsFPL 2003, (LNCS 2778), 2003, pages 786-795.

[12] G. Orlando, C. Paar, A scalable GF(p) elliptic curve
processor architecture for programmable hardware
CHES 2001, LNCS 2162, pages 348–363, 2001.

[13] P. C. Kocher, Timing attacks on implementations
of Diffie-Hellman, RSA, DSS and other systems,
CRYPTO’96, pages 104–113.

10th Euromicro Conference on Digital System Design Architectures, Methods and Tools (DSD 2007)
0-7695-2978-X/07 $25.00 © 2007

