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Abstract—This paper deals with the estimation of the channel
impulse response (CIR) in orthogonal frequency division multi-
plexed (OFDM) systems. In particular, we focus on two pilot-aided
schemes: the maximum likelihood estimator (MLE) and the
Bayesian minimum mean square error estimator (MMSEE). The
advantage of the former is that it is simpler to implement as it
needs no information on the channel statistics. On the other hand,
the MMSEE is expected to have better performance as it exploits
prior information about the channel.

Theoretical analysis and computer simulations are used in the
comparisons. At SNR values of practical interest, the two schemes
are found to exhibit nearly equal performance, provided that the
number of pilot tones is sufficiently greater than the CIRs length.
Otherwise, the MMSEE is superior. In any case, the MMSEE is
more complex to implement.

Index Terms—Channel estimation, maximum likelihood, min-
imum mean square error, OFDM.

I. INTRODUCTION

ORTHOGONAL frequency division multiplexing (OFDM)
has received considerable interest in the last few years for

its advantages in high-bit-rate transmissions over frequency-se-
lective fading channels. In OFDM systems, the input high-rate
data stream is divided into many low-rate streams [1], [2] that
are transmitted in parallel, thereby increasing the symbol dura-
tion and reducing the intersymbol interference. These features
have motivated the adoption of OFDM as a standard for dig-
ital audio broadcasting (DAB) [3], digital video broadcasting
(DVB) [4], and broadband indoor wireless systems [5].

Coherent OFDM detection requires channel estimation and
tracking. To this purpose, known symbols (pilots) are often mul-
tiplexed into the data and channel estimation is performed by in-
terpolation. Channel estimation can be avoided by using differ-
ential detection, at the cost, however, of a 3-dB loss in signal-to-
noise ratio (SNR).

Several pilot-aided channel-estimation schemes for OFDM
applications have been investigated, and [6]–[10] provide a
good sample of the results obtained in this area. In particular,
the method proposed in [6] provides channel estimates based on
piecewise-constant and piecewise-linear interpolations between
pilots. It is simple to implement, but it needs a large number
of pilots to get satisfactory performance. In [7], a low-rank
approximation to the frequency-domain linear minimum mean
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squared error estimator (MMSEE) is proposed, making use
of singular value decomposition techniques. The drawback of
this approximation is that it requires knowledge of the channel
frequency correlation and the operating SNR. In practice, the
system can be designed for fixed values of SNR and channel
correlation at the expense of performance losses. The MMSEE
studied in [8] exploits channel correlations in time and fre-
quency domains. Like the scheme in [7], it needs knowledge
of the channel statistics and the operating SNR. Although it
can work in a mismatched mode, its performance degrades if
the assumed Doppler frequencies and delay spreads are smaller
than the true ones. In [9], channel estimation is performed by
two-dimensional interpolation between pilots. Like the method
in [8], it is rather robust to Doppler, even though it exhibits
performance degradations with lower Doppler frequencies.
Finally, [10] investigates the maximum likelihood estimator
(MLE). No information on the channel statistics or the oper-
ating SNR is required in this scheme.

Some remarks about MLE and MMSEE are of interest. These
estimators are based on different assumptions about the channel
impulse response (CIR). In the former, the CIR is viewed as a
deterministic but unknownvector, whereas in the latter, it is re-
garded as arandomvector whose particular realization we want
to estimate. Correspondingly, the mean squared error (MSE) in
the MLE is understood as an average over the observed data,
whereas in the MMSEE, the average is taken not only over the
data but over the CIR probability density function as well. It fol-
lows that the MMSEE has the minimum MSE “on the average,”
i.e., with respect to all the CIR realizations.

As we will see, the MLE achieves the Cramér-Rao lower
bound (CRLB), and therefore, it is the minimum-variance un-
biased estimator. No further improvement in MSE is possible
as long as the CIR is viewed as a deterministic quantity and the
estimator is unbiased. On the other hand, the MMSEE has prior
information on the CIR and can exploit this information to do
better than the MLE.

The above considerations prompt some important questions.
The first is whether it is conceptually possible for the MMSEE
to perform below the CRLB. The answer is affirmative since
the CRLB is a bound only in the framework of theclassical ap-
proach to estimation (where CIR is a deterministic quantity).
When dealing with MMSEE, on the other hand, we adopt a
Bayesian approach, and the corresponding estimation accuracy
depends on prior information. In principle, performance can be
as good as desired, provided that sufficient prior information is
available. To emphasize this fact, in the following, we denote as
MSE andBayesianMSE (BMSE) the mean square errors in the
MLE and MMSEE, respectively.
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Fig. 1. (a) Block diagram of the OFDM transmitter. (b) Block diagram of the OFDM receiver.

Having established that MMSEE can do better than the
CRLB, we wonder how much better it can do in practice and
under which operating conditions. We also wonder about the
price to pay in terms of computational complexity.

The purpose of this paper is to answer these questions.
The discussion is organized as follows. The next section
describes the signal model and introduces some basic nota-
tions. Section III revisits MLE and MMSEE and compares
their complexity. Performance is assessed and is compared
in Section IV. Section V discusses analytical and simulation
results, and Section VI offers some conclusions.

II. SIGNAL MODEL

We consider an OFDM system employingsubcarriers for
the transmission of parallel data symbols. Notice that
subcarriers (virtual carriers) at the edges of the spectrum are not
used to avoid aliasing problems at the receiver [11]. The block
diagram of the OFDM transmitter is shown in Fig. 1(a). The
stream of data (belonging to a PSK or QAM constellation)
is serial to parallel (S/P) converted and partitioned into adjacent
blocks of length . After insertion of zeros,
the th OFDM block

(1)
is fed to an -point inverse discrete Fourier transform (IDFT)
unit that produces the -dimensional vector of time-domain
samples. In order to eliminate any interference between adja-
cent OFDM symbols, an -point cyclic prefix (longer than
the overall channel impulse response) is appended to. The
resulting extended vector drives a linear modulator with impulse
response and signaling interval , where

is the OFDM symbol duration. In the following, we assume
that is a root-raised-cosine function with rolloff.

The OFDM receiver is sketched in Fig. 1(b). After matched
filtering, the signal is sampled at rate and serial to par-
allel converted. Next, the cyclic prefix is removed, and the re-
ceived samples are passed to an-point discrete Fourier trans-
form (DFT) unit. As in [7], we assume that the channel varia-
tions are negligible over one block of data, and we indicate with

(the superscript
indicates vector transpose) the-spaced samples of the overall
CIR. Denoting

(2)

the DFT of and dropping the block identifierfor simplicity,
the output of the DFT unit is found to be [12]

(3)

where int , and int meansinteger partof
the enclosed quantity. In (3), the are the useful data sym-
bols, and is the channel noise, which is modeled as a
white Gaussian process with zero mean and variance

.
Coherent detection requires knowledge of the sampled

channel frequency response . In this study, we as-
sume that some known symbols (pilots) are multiplexed
into the data stream, and channel estimation is performed
by interpolation between pilots. A total of pilots

are inserted in the OFDM block
at known locations . Denoting by

the -dimensional
vector containing the DFT output at the pilot locations, from
(2) and (3), we have

(4)
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where is a diagonal matrix

(5)

and is an matrix with entries

(6)

Vector has a Gaussian distribution with zero mean and covari-
ance matrix

(7)

where is the identity matrix of order . Pilot symbols are
taken from a PSK constellation, i.e., . Then, premulti-
plying both sides of (4) by (the superscript indicates
Hermitian transpose) produces

(8)

where has entries

(9)

and is statistically equivalent to . The goal is to
derive estimates of the channel frequency response from
the observation of .

III. PILOT-AIDED CHANNEL ESTIMATION

Let be the vector containing the
channel frequency response. From (2), it is seen that

(10)

where is a matrix with entries

(11)

From the invariance property of MLE [13, p. 185] and MMSEE
[13, p. 349], it follows that if is the estimate of (either ML or
MMSE), then the corresponding estimate ofcan be computed
as

(12)

A. Maximum Likelihood Estimator

The MLE is based on the assumption thatis a deterministic
but unknown vector. The estimate ofis derived from the linear
model (8) and is given by [13, p. 186]

(13)

where is a square matrix

(14)

whose entries are computed from (6)

(15)

Note that (13) can be written in scalar form as

(16)

Hence, substituting into (12) yields

(17)

with

(18)

B. Minimum Mean Square Error Estimator

The MMSEE is based on theBayesan approachto statis-
tical estimation, in which is modeled as a random vector.
In deriving the MMSEE, we assume thatis zero-mean and
Gaussian and is uncorrelated with. Under these assumptions,
it is found that[13, p. 364]

(19)

where

(20)

and

(21)

is the covariance matrix of. Substituting (19) into (12) yields
the MMSEE of the channel frequency response

(22)

where

(23)

C. Remarks

i) Equation (13) indicates that MLE requires the invert-
ibility of . Such a condition is met if and only if is
full rank and . This means that the number of pi-
lots must be not smaller than the number of channel taps.
On the other hand, from (19), we see that MMSEE re-
quires the invertibility of . For this to hold, however,
need not be full rank. Thus, the MMSEE can exist even
if .

ii) If is a square matrix , from (13) and (14), it
is seen that reduces to the channel estimator pro-
posed by Negi and Cioffi [10]

(24)

iii) From (19), it is clear that MMSEE is linear in the ob-
served vector . This is a consequence of the Gaussian
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assumption on . It follows that MMSEE coincides with
the maximuma posteriori(MAP) estimator [13, p. 485].

iv) Comparing (19) and (20) with (13) and (14), it is seen
that MMSEE reduces to MLE at high SNRs (i.e., when

or if no prior information on is given (i.e.,
when being the null matrix).

v) Comparing (17) and (22), it appears that MLE and
MMSEE have the same form

(25)

which amounts to an interpolation between the samples
. Equations (14) and (18) indicate that the coef-

ficients in the MLE depend only on the
pilot symbols’ locations, which are known. Hence, the

can be precomputed and stored. On the
contrary, from (20) and (23), it is seen that the coeffi-
cients in the MMSEE also depend on
the channel covariance matrix and the noise variance

. Thus, suitable schemes must be found to estimate
these parameters. Furthermore, even assuming that
estimates of and are available, the computation
of still requires inverting and . In
conclusion, the MMSEE is much more complex than
the MLE.

vi) MLE and MMSEE can be implemented in two different
ways.

a) Compute from (25).
b) Compute first from (13) or (19) and then derive

as the DFT of .
Procedure a) requires storing the coefficients

and performing real multiplications and
real additions. In writing these figures, we

have borne in mind that a complex multiplication corresponds
to four real multiplications and two real additions, whereas a
complex addition is equivalent to two real additions. Procedure
b) requires storing for the MLE and for the
MMSEE. Furthermore, use of the fast Fourier transform (FFT)
involves real multiplications and

real additions. In these fig-
ures, is the pruning factor [14] and represents the computa-
tional saving obtained in the FFT calculation by eliminating the
operations on zeros. It turns out thatis given by

(26)

A comparison between the computational load in the two pro-
cedures is tricky because many parameters are involved, and dif-
ferent answers may be given, depending on the operating condi-
tions. In any case, procedure a) requires more memory storage
than b) since in many practical situations.

IV. PERFORMANCEANALYSIS

The performance of MLE and MMSEE can be expressed ei-
ther in terms ofindividual mean square error

(27)

or total mean square error

(28)

A. Performance of MLE

With the MLE, the vector is a constant, and the expectation
in (27) is taken over the thermal noise. In Appendix A, it is
shown that MLE is unbiased, i.e.,

(29)

and the individual MSE is given by

(30)

Substituting (30) into (28) yields

(31)

where

(32)

In Appendix A, it is also shown that (31) coincides with the
CRLB.

Although the MLE is derived for a deterministic, it can also
be applied with a random CIR. In other words, the deterministic
assumption is made to derive the MLE, which is then used with
a random channel. In this context, it makes sense to consider the
average of MSE taken over the CIR realizations. However, since

does not depend on, it is clear that individual and
total errors are not affected by the averaging operation. Thus,
they coincide with the Bayesian mean square errors.

B. Performance of the MMSEE

With the MMSEE, the expectation in (27) is taken over the
noise and the CIR probability density function. The covariance
matrix

(33)

can be written as [13, p. 391]

(34)

where is defined in (20). Then, substituting (12) into (27) and
(28) and bearing in mind (34) yields the individual and total
BMSE

(35)

(36)

where is defined in (32).
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C. Performance Comparison

From (31) and (32) and (35) and (36), it is seen that the esti-
mation accuracy of MLE and MMSEE depends on

i) the noise variance ;
ii) the number of channel taps;
iii) the DFT size ;
iv) the number of modulated subcarriers ;
v) the number and locations of the pilots (through);

vi) the prior channel covariance matrix (only for
MMSEE).

Given and , it would be interesting to determine
the optimal pilots’ locations that minimize the total BMSE. The
solution to this problem is given in [10] for MLE when there are
no suppressed carriers. It is found that the best performance is
achieved by resorting to uniformly spaced pilots with separation
interval , i.e.,

(37)

Correspondingly, reduces to

(38)

and becomes

(39)

Assuming that the entries of are zero-mean in-
dependent Gaussian random variables with variance

, it can be shown that

(40)

where is defined as

(41)

and is less than unity. Notice that and
are independent of the subcarrier index and coincide with the
total estimation errors and . As is intuitively ex-
pected, (39) and (40) say that the estimation accuracy degrades
as the number of channel taps increases and the number of pilots
decreases.

Equation (37) indicates the optimal pilots’ locations when
there are no virtual carriers. Unfortunately, such a condition is
not always met in practice. When some carriers at the edges of
the spectrum are suppressed, the only way to determine the op-
timal pilots’ locations is through exhaustive search. However,
some qualitative conclusions can be drawn by inspection of
Figs. 2 and 3, which show the BMSE for MLE and MMSEE
as a function of the subcarrier index. Solid lines represent the-
oretical results as given by (30) and (35), whereas vertical bars
indicate the pilots’ locations. The operating conditions in Fig. 2
are as follows.

i) The channel has an exponential power delay profile
, with .

ii) DFT size .
iii) Modulated subcarriers .

Fig. 2. BMSE versus subcarrier indexn with uniformly spced pilots.

Fig. 3. BMSE versus subcarrier indexn with nonuniformly spced pilots.

iv) Twenty eight uniformly spaced pilot tones, i.e.,

(42)

v) SNR dB.
It is worth noting that (37) is not met here since the number of
suppressed carriers is greater than .

It is seen that and are flat in the
middle of the signal bandwidth, but grows rapidly
at the edges. This implies a reduced reliability of the data at
the boundaries of the spectrum. A simple way to alleviate this
drawback is to decrease the pilots’ distance at the edges, as
indicated in Fig. 3. In conclusion, in the presence of suppressed
carriers, the minimum BMSE can be achieved with nonuni-
formly spaced pilots.

Fig. 4 shows the total BMSE versusfor MLE with
and SNR dB. The upper curve corre-

sponds to 28 pilots at the locations in (42), whereas the lower
curve corresponds to 44 pilots at

(43)
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Fig. 4. � versus the channel lengthL with N = 28, 44.

As expected, the estimation accuracy improves as the number
of pilots increases and the channel length decreases. Note that

shows a rapid growth asapproaches . This indicates
that setting , as is done in [10], may be restrictive.

Fig. 5 shows the total BMSE versusfor MMSEE under the
same operating conditions as in Fig. 4. Again, an exponential
power delay profile as in Figs. 2 and 3 is assumed. Compared
with Fig. 4, it is seen that the growth of BMSE is limited as
approaches .

The ratio versus is shown in Fig. 6 for
with SNR as a parameter. It is seen that MLE and

MMSEE have comparable performance at intermediate/high
SNR values, provided that the number of pilots is sufficiently
larger than the channel length. However, the MMSEE is
superior either at low SNR or for close to . As mentioned
in the introduction, this superiority comes from the knowledge
of the covariance matrix and the noise level .

V. SIMULATION RESULTS

Computer simulations have been run to check and extend the
analytical results of the previous section. The simulated system
is as follows.

A. System Parameters

i) DFT size .
ii) Modulated subcarriers .
iii) There is a cyclic prefix of 50 samples.
iv) The channel has paths, with path delays of

samples. The amplitude of each
path varies independently of the others, according to a
Rayleigh distribution with an exponential power delay
profile, i.e.,

(44)

Correspondingly, we have

diag (45)

Fig. 5. � versus the channel lengthL with N = 28, 44.

Fig. 6. � =� versus the channel lengthL with N = 28.

where . The phase shift on each path is
uniformly distributed over , and the channel length
is .

v) The channel is static over the OFDM symbol duration
[7]. A new channel is generated at each simulation run,
and the system performance is averaged over the CIR
realizations.

vi) Two configurations are considered for the pilots.

1) , with pilots’ locations at

(46)

2) , with pilots’ locations at

(47)

The first case corresponds to the standard for dig-
ital TV [15].

vii) The energy of the useful signal (including the pilot tones)
at the DFT output is normalized to unity. Correspond-
ingly, the SNR equals , where is the variance of
the Gaussian noise.
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Fig. 7. Total BMSE versus SNR withN = 151.

B. Performance Comparisons

Performance comparisons have been made in terms of total
BMSE and symbol error rate (SER). Figs. 7 and 8 show the
total BMSE versus SNR for MLE, MMSEE, and the estimators
proposed by Rinne and Renfors (RRE) [6] and by Li (LE) [9].
The RRE makes a piecewise-linear interpolation of the type

(48)

The estimator in [9] holds for a general time-varying channel.
With a static channel, it boils down to a cardinal interpolation
between pilots

(49)

with

(50)

and is the pilots’ spacing. Note that the LE needs knowledge
of the noise variance . In the simulations shown in Figs. 7–
10, it is assumed that is perfectly known.

The pilots in Fig. 7 are 151, whereas in Fig. 8, they are 76.
Marks indicate simulations. Solid lines represent theoretical re-
sults only for MLE and MMSEE, whereas for RRE and LE, they
are drawn to make them easier to read. It is seen that MMSEE
has the best performance at low SNRs. At intermediate and high
SNRs, on the other hand, MLE and MMSEE are comparable.
The loss of LE from MLE and MMSEE is approximately 6 dB
in Fig. 7 and 3 dB in Fig. 8. As for the RRE, it exhibits a floor
that worsens as the number of pilots decreases.

Fig. 8. Total BMSE versus SNR withN = 76.

Fig. 9. SER versus SNR withN = 151.

Figs. 9 and 10 show the influence of the estimation accuracy
on the SER. The symbols are taken from a QPSK constellation,
and the operating conditions are the same as in Figs. 7 and 8.
The curve labeled ideal channel information (ICI) corresponds
to perfect knowledge of the channel transfer function at the re-
ceiver. It is seen that MLE and MMSEE have virtually the same
performance at all SNRs. The loss from ICI is 1 dB in Fig. 9 and
2 dB in Fig. 10.
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Fig. 10. SER versus SNR withN = 76.

VI. CONCLUSION

Two channel estimation schemes for OFDM systems have
been compared. The main advantage of MLE over MMSEE
is that it does not require knowledge of the channel statistics
and the SNR, and therefore, it is simpler to implement. On the
other hand, under certain operating conditions, the MMSEE
has better accuracy as it exploits prior information about the
channel. Specifically, the following has been found.

i) The channel estimates at the edges of the bandwidth are
worse than those in the middle. A possible remedy is to
adopt a denser pilot spacing at the edges.

ii) MMSEE performs better than MLE at low SNR.
iii) At intermediate and high SNRs, the two schemes have

comparable performance, provided that the number of
pilots is sufficiently larger than the duration of the CIRs.

Comparisons have also been made with the estimators pro-
posed in [6] and [9]. It turns out that the loss in performance of
LE with respect to MLE and MMSEE is limited, whereas that
of RRE may be significant, unless the number of pilots is suffi-
ciently high.

APPENDIX A

In this Appendix, we compute the MSE for MLE. Substi-
tuting (13) into (12) and using (8) produces

(A1)

Then, bearing in mind that has zero mean, from (A1) and (10),
it is seen that is unbiased.

Using (A1) and (14), the covariance matrix of is found
to be

(A2)

Hence, the MSE for is

(A3)

Next, we show that achieves the CRLB. To this end,
we observe that is a linear transformation of [see (10)]. As
estimation efficiency is maintained over linear transformations
[13, p. 47], it suffices to demonstrate that is an efficient
estimator. Accordingly, we first compute the CRLB for, and
then, we compare it with the MSE of .

Call and the real and imaginary components of, and
define . The components of the Fisher informa-
tion matrix for are given by

(A4)

where is the probability density function of for ,
given

(A5)

Substituting (A5) into (A4) yields

Re Im
Im Re

(A6)

where is the matrix defined in (14). Then, we have

Re Im
Im Re

(A7)

The CRLB is given by

CRLB tr (A8)

where tr indicates the trace of a matrix. Substituting (A7)
into (A8) and bearing in mind that is Hermitian produces

CRLB tr (A9)

On the other hand, from (8) and (13), it follows that has
covariance matrix

(A10)

Comparing (A9) with (A10), it follows that the variance of
coincides with the CRLB, and this concludes the proof.
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