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Abstract—This paper deals with the estimation of the channel squared error estimator (MMSEE) is proposed, making use
impulse response (CIR) in orthogonal frequency division multi- - of singular value decomposition techniques. The drawback of
plexed (OFDM) systems. In particular, we focus on two pilot-aided - this approximation is that it requires knowledge of the channel
schemes: the maximum likelihood estimator (MLE) and the . . .
Bayesian minimum mean square error estimator (MMSEE). The frequency correlathn and the.operatmg SNR. In practice, the
advantage of the former is that it is simpler to implement as it System can be designed for fixed values of SNR and channel
needs no information on the channel statistics. On the other hand, correlation at the expense of performance losses. The MMSEE
the MMSEE is expected to have better performance as it exploits studied in [8] exploits channel correlations in time and fre-
prior information about the channel. _ _ quency domains. Like the scheme in [7], it needs knowledge

Theoretical analysis and computer simulations are used in the - - .
comparisons. At SNR values of practical interest, the two schemes of the chqnnel S_tat'St'CS and the qperatlng SNR. Although 't_
are found to exhibit nearly equal performance, provided that the €an work in a mismatched mode, its performance degrades if
number of pilot tones is sufficiently greater than the CIRs length. the assumed Doppler frequencies and delay spreads are smaller
Otherwise, the MMSEE s superior. In any case, the MMSEE is than the true ones. In [9], channel estimation is performed by
more complex to implement. two-dimensional interpolation between pilots. Like the method

Index Terms—Channel estimation, maximum likelihood, min- in [8], it is rather robust to Doppler, even though it exhibits

imum mean square error, OFDM. performance degradations with lower Doppler frequencies.
Finally, [10] investigates the maximum likelihood estimator
I. INTRODUCTION (MLE). No information on the channel statistics or the oper-

o o ating SNR is required in this scheme.
O RTHOGONAL frequency division multiplexing (OFDM)  some remarks about MLE and MMSEE are of interest. These
has received considerable interest in the last few years {Qfiimators are based on different assumptions about the channel

its deanta_lges in high-bit-rate transmissions over frequ_ency—ﬁﬁpu|se response (CIR). In the former, the CIR is viewed as a
lective fading channels. In OFDM systems, the input high-rafgsterministic but unknowwector, whereas in the latter, it is re-
data stream is divided into many low-rate streams [1], [2] thghrded as sandomvector whose particular realization we want
are transmitted in parallel, thereby increasing the symbol dufg-estimate. Correspondingly, the mean squared error (MSE) in
tion and reducing the intersymbol interference. These featukga MLE is understood as an average over the observed data,
have motivated the adoption of OFDM as a standard for digmereas in the MMSEE, the average is taken not only over the
ital audio broadcasting (DAB) [3], digital video broadcastingjata hut over the CIR probability density function as well. It fol-
(DVB) [4], and broadband indoor wireless systems [35]. lows that the MMSEE has the minimum MSE “on the average,”

Coherent OFDM detection requires channel estimation ang_, with respect to all the CIR realizations.
tracking. To this purpose, known symbols (pilots) are often mul- A5 we will see, the MLE achieves the Cramér-Rao lower
tiplexed into the data and channel estimation is performed by ¥yund (CRLB), and therefore, it is the minimum-variance un-
terpolation. Channel estimation can be avoided by using diff§§i3sed estimator. No further improvement in MSE is possible
ential detection, atthe cost, however, of a 3-dB loss in signal-tgs jong as the CIR is viewed as a deterministic quantity and the
noise ratio (SNR). o estimator is unbiased. On the other hand, the MMSEE has prior

Several pilot-aided channel-estimation schemes for OFDifkormation on the CIR and can exploit this information to do
applications have been investigated, and [6]-[10] providegtter than the MLE.
good sample of the results obtained in this area. In particular,The ahove considerations prompt some important questions.
the method proposed in [6] provides channel estimates basedfya first is whether it is conceptually possible for the MMSEE
piecewise-constant and piecewise-linear interpolations betwqgrberform below the CRLB. The answer is affirmative since
pilots. It is simple to implement, but it needs a large numbegie CRLB is a bound only in the framework of thiassical ap-
of pilots to get satisfactory performance. In [7], & low-rankroachto estimation (where CIR is a deterministic quantity).
approximation to the frequency-domain linear minimum meafyhen dealing with MMSEE, on the other hand, we adopt a

Bayesian approacgtand the corresponding estimation accuracy
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Fig. 1. (a) Block diagram of the OFDM transmitter. (b) Block diagram of the OFDM receiver.

Having established that MMSEE can do better than the The OFDM receiver is sketched in Fig. 1(b). After matched
CRLB, we wonder how much better it can do in practice arfitering, the signal is sampled at ralg¢7; and serial to par-
under which operating conditions. We also wonder about th#el converted. Next, the cyclic prefix is removed, and the re-
price to pay in terms of computational complexity. ceived samples are passed taMapoint discrete Fourier trans-

The purpose of this paper is to answer these questiofem (DFT) unit. As in [7], we assume that the channel varia-
The discussion is organized as follows. The next sectitions are negligible over one block of data, and we indicate with
describes the signal model and introduces some basic natd! = [0 (0), LD (1),. .., RO(L—1)]% (the superscript- )T
tions. Section Il revisits MLE and MMSEE and comparesdicates vector transpose) thg-spaced samples of the overall
their complexity. Performance is assessed and is compaf&iR. Denoting
in Section IV. Section V discusses analytical and simulation
results, and Section VI offers some conclusions. H(l) Z h(l) —j27rnk/N @
Il. SIGNAL MODEL

We consider an OFDM system employingsubcarriers for te DFT ofh® and dropping the block identifiéfor simplicity,

the transmission oP parallel data symbols. Notice that— p  the output of the DFT unitis found to be [12]
subcarriers (virtual carriers) at the edges of the spectrum are not X(n) = H <N 3
used to avoid aliasing problems at the receiver [11]. The block (n) = enfl(n) +w(n) In] ¢ )

diagram of the OFDM transmitter is shown in Fig. 1(a). Th@heren, = = int{N(1—«)/2], and int - ) meansnteger partof
stream of datdc; } (belonging to a PSK or QAM constellation)the enclosed quantity. In (3), the, are the useful data sym-
is serial to parallel (S/P) converted and partitioned into adjaca§¥i|s, andw(n) is the channel noise, which is modeled as a
blocks of length” = 2N, + 1. After insertion ofV — P zeros, \yhite Gaussian process with zero mean and variarfce=

the /th OFDM block E{Jw(n)|2}.
0 0 ® 0.0 0.0 OO0 Coherent detection requires knowledge of the sampled
1o ON Nootor6=26-1 channel frequency responsH(n). In this study, we as-

(1) sume that some known symbols (pilots) are multiplexed

is fed to an/V-point inverse discrete Fourier transform (IDFT)nto the data stream, and channel estimation is performed
unit that produces th& -dimensional vectad") of time-domain by interpolation between npilots. A total ofV, npilots

samples. In order to eliminate any interference between adjg; .0 < » < N, — 1} are inserted in the OFDM block
cent OFDM symbols, amVg-point cyclic prefix (longer than st known Iocatlons{Ln,O < n < N, — 1}. Denoting by
the overall channel |mpulse response) is appendééf)boThe X = [X(Lo) A( Dy X(in, _1)]T the N d|men5|onal

response(t) and signaling interval, = 7/(N 4+ Ng), where  (2) and (3), we have

T is the OFDM symbol duration. In the following, we assume
thatg(¢) is a root-raised-cosine function with rollaff. X =ABh+w (4)
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where A is a diagonal matrix Note that (13) can be written in scalar form as
A:diag{ao,al,...,aNp_l} (5) ~ No 1 L1 _ - . r
hMLE(k) = Z Z(m) Z[D l]kaJQﬂ—an/A . (16)
andB is anN, x L matrix with entries m=0 n=0

o pi N Hence, substituting into (12) yields
[Blos = 72™0/N 0<n<N-1, 0<k<L-1. (6) ginto (12)y

Np,—1
Vectorw hqs a Gaussian distribution with zero mean and covari- f]l\qLE(n) = Z Z(m)pure(n, m). (17)
ance matrix =0
C, = O_QINP ) with
L—1
wherel v, is the identity matrix of ordeN,,. Pilot symbols are puLE(n,m) = Z [D LB, e 92R/N (18)
taken from a PSK constellation, i.éq,| = 1. Then, premulti- k=0

plying both sides of (4) byd” (the superscript-)* indicates

Hermitian transpose) produces B. Minimum Mean Square Error Estimator

Z =Bh+w (8) The MMSEE is based on thBayesan approacko statis-
tical estimation, in whichkh is modeled as a random vector.
whereZ = A X has entries In deriving the MMSEE, we assume thatis zero-mean and
o Gaussian and is uncorrelated with Under these assumptions,
Z(n) =a, X(in) 0<n<N,—1 (9 itis found that[13, p. 364]
andw = A" w is statistically equivalent tas. The goal is to hyviviser = V1BYZ (19)
derive estimates of the channel frequency respéhge) from
the observation of. where
_ 21
[ll. PILOT-AIDED CHANNEL ESTIMATION V=o Ch +D (20)

- d
Let H = {H(n);|n|] < N,} be the vector containing the 2"

H
channel frequency response. From (2), it is seen that Cp, = E{hh"} (21)
H=Gh (10) is the covariance matrix df. Substituting (19) into (12) yields
the MMSEE of the channel frequency response

where@ is a matrix with entries Np—1

[Glog =92 /N |n|<N,, 0<k<L—1. (11) Hhiser(n) = 2_:0 Zlmiproasen(n,m) - (22)
From the invariance property of MLE [13, p. 185] and MMSEEwhere
[13, p. 349], it follows that ith is the estimate ak (either ML or L1
g/ISMSE), then the corresponding estimatdbtan be computed prnsER(n, m) = Z V-1 BH]kym o—i2mnk/N (23)

k=0

H = Gh. (12)
C. Remarks
i) Equation (13) indicates that MLE requires the invert-

A. Maximum Likelihood Estimator ibility of D. Such a condition is met if and only B is

The MLE is based on the assumption thas a deterministic full rank andV,, > L. This means that the number of pi-
but unknown vector. The estimatelefs derived from the linear lots must be not smaller than the number of channel taps.
model (8) and is given by [13, p. 186] On the other hand, from (19), we see that MMSEE re-

. ien quires the invertibility of¥. For this to hold, howevef3
hvin=D""B"Z (13) need not be full rank. Thus, the MMSEE can exist even
. . if v, < L.
whereD is a square matrix ii) If Bisasquare matrixV,, = L), from (13) and (14), it
D—BHB (14) is seen thahy. reduces to the channel estimator pro-
posed by Negi and Cioffi [10]
whose entries are computed from (6) . 1
hvie =B Z. (24)
N,—1
[D]s = Z =R /N g <pn k< L—1. (15) iii) From (19), it is clear that MMSEE is linear in the ob-

served vecto¥. This is a consequence of the Gaussian

m=0
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assumption oth. It follows that MMSEE coincides with or total mean square error
the maximuna posteriori(MAP) estimator [13, p. 485].

iv) Comparing (19) and (20) with (13) and (14), it is seen r— 1 i (n) (28)
that MMSEE reduces to MLE at high SNRs (i.e., when T 2N, +1 Nyt -
o? — 0) or if no prior information onh is given (i.e., -
WhenC’ — 0, 0 being the null matrix).
V) Comparmg (17) and (22), it appears that MLE and- Performance of MLE
MMSEE have the same form With the MLE, the vectoh is a constant, and the expectation
N, 1 in (27) is taken over the thermal noise. In Appendix A, it is
H(n) = Z Z(m)p(n,m) (25) shown that MLE is unbiased, i.e.,
"= E{Hyie(n)} = H(n) (29)

which amounts to an interpolation between the samples

Z(m). Equations (14) and (18) indicate that the coefand the individual MSE is given by

ficients pype(n, m) in the MLE depend only on the L1L_1

pilot symbols’ locations, which are known. Hence, the 2 —1 j2mn(m—Fk)/N
puie(n,m) can be precomputed and stored. On the naLe(n) = o Z Z Jime - (30)
contrary, from (20) and (23), it is seen that the coeffi-
cients pyvsee(n, m) in the MMSEE also depend on Substituting (30) into (28) yields

k=0 m=0

the channel covariance mati¥, and the noise variance L-1L-1
o2, Thus, suitable schemes must be found to estimate I'yip =0 Z Z “ma(m — k) (31)
these parameters. Furthermore, even assuming that 4’0 0

estimates ofC;, ando? are available, the computation
of Pyivser(n, m) still requires invertingCy, andV. In
conclusion, the MMSEE is much more complex than

where
sin[r (2N, + 1)m/N]

the MLE. M) = BN+ 1) sinfrm ] (32)
vi) MLE and MMSEE can be implemented in two different
ways. In Appendix A, it is also shown that (31) coincides with the

CRLB.
Although the MLE is derived for a deterministg it can also
be applied with a random CIR. In other words, the deterministic
: . - assumption is made to derive the MLE, which is then used with
Procedure a) requires storing BV + 1)V, coefficients arandom channel. In this context, it makes sense to consider the

Z(ZERT ﬂi) Srgg Apferjrolr ;nrlggllgégl tigrgj\lfn :;ﬁllnmumzlgﬁlol?rz:nvieaverage of MSE taken over the CIR realizations. However, since
9 9 r(n) does not depend o, it is clear that individual and

have borne in mind that a complex multiplication correspongd -
Otal errors are not affected by the averaging operation. Thus,
to four real multiplications and two real additions, whereas
ey coincide with the Bayesian mean square errors.
complex addition is equivalent to two real additions. Procedur
b) requires storingD~*B* for the MLE andV ~*B" for the 5 performance of the MMSEE
MMSEE. Furthermore, use of the fast Fourier transform (FFT)

involves4LN,, + 2p(2N, + 1) log, NNV real multiplications and \,Nith the MMSEE, the e_>$pectatic.>n in (27,) is taken over the
4(N, — 2)L +3p(2N,, + 1) log, N real additions. In these fig- noise and the CIR probability density function. The covariance
b «@ )

a) Computef (n) from (25).
b) Compute firsth from (13) or (19) and then derive
H(n) as the DFT ofh.

ures,p is the pruning factor [14] and represents the computH]atriX
tional saving obtained in the FFT calculation by eliminating the c. — el B2 33
operations on zeros. It turns out thais given by : { MMSEE MMSEE} (33)
_ _ can be written as [13, p. 391]
1 log,(N/L) — 2(1 L/N) (26)
log, V Cﬁ — syt (34)

A comparison between the computational load in the two pro-
ceduresis tricky because many parameters are involved, and
ferent answers may be given, depending on the operating conli-

li;ereV is defined in (20). Then, substituting (12) into (27) and
8) and bearing in mind (34) yields the individual and total

tions. In any case, procedure a) requires more memory stor SE
than b) since. <« 2N, + 1 in many practical situations. L-1L-1
inser(n) = 07 > N [V i el 2RV (35)
V. PERFORMANCEANALYSIS ’; ?,;, f
The performance of MLE and MMSEE can be expressed ei- T MMSER = O Z Z Nema(m — k) (36)
ther in terms oindividual mean square error 0 0

v(n) = E{|H(n) — H(n)*} (27) whereg(m) is defined in (32).
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C. Performance Comparison 0.15 T ‘ . \ -

From (31) and (32) and (35) and (36), it is seen that the es . N=S12. 1=20 ]
mation accuracy of MLE and MMSEE depends on - NgF216 — MLE 1
i) the noise variance?; - SNR=10 dB .
ii) the number of channel taps; 010 |~
iii)y the DFT sizeV;
iv) the number of modulated subcarri@®’,, + 1;
v) the numberV, and locations of the pilots (throught);
vi) the prior channel covariance matrig’;, (only for i
MMSEE). i |
GivenL, N, N, and N, it would be interesting to determine 99 T T ? T o9
the optimal pilots’ locations that minimize the total BMSE. Tht Tl T | H B
solution to this problem is given in [10] for MLE when there are ([ ; ‘ ‘ | ’ ‘ ] | ’i
-250  -200 -150 -100 -50 0 50 100 150 200 250

Yve(®) & Yymses(m)

no suppressed carriers. It is found that the best performanci %%
achieved by resorting to uniformly spaced pilots with separatic

intervalA = N/N,,, i.e., Subcarrier index, n
i — Gy = N/N 1<m<N,—1 (37) Fig. 2. BMSE versus subcarrier indexwith uniformly spced pilots.
m m—1 — P = = P .
CorrespondinglyD reduces to s T T T
B N=512, L=20 1
D =N, x1Iy (38) i N216 e |
andyvLg(n) becomes - i SNR=10 dB T MMSEE )
~ 010 |— -
o’L g R
YMLE(R) = N (39) = - .
P < L i
Assuming that the entries ofh are zero-mean in- § ]
dependent Gaussian random variables with varian,2 oos [~ .
o7,k =0,1,...,L — 1, it can be shown that i iy
where is defined as 0.00 ' ‘ . : otk Dbl
-250  -200 -150 -100 -50 0 50 100 150 200 250
L
1 1 Subcarrier index, n
A=y — 41 ’
L2 T3 02/, @

Fig. 3. BMSE versus subcarrier indexwith nonuniformly spced pilots.
and is less than unity. Notice that;r(n) and ymmser(n)
are independent of the subcarrier index and coincide with theiv) Twenty eight uniformly spaced pilot tones, i.e.,
total estimation errorBy.r andl'yvivser. AS is intuitively ex-

pected, (39) and (40) say that the estimation accuracy degrades tm = =216+ 16m 0<m <27 (42)
as the number of channel taps increases and the number of piIotsV) SNR = 10 dB.
decreases.

) - . oo . It is worth noting that (37) is not met here since the number of
Equation (37) indicates the optimal pilots’ locations Wheguppressed carriers is greater tHanv,,.

there are no virtual carriers. Unfortunately, such a condition ISE is seen thatywiu(n) and yvsee(n) are flat in the

not always met in practice. When some carriers at the edgesh% dl ; . .
. e of the signal bandwidth, bufyrr(n) grows rapidly
the spectrum are suppressed, the only way to determine thegto'fhe edges. This implies a reduced reliability of the data at

timal pilots’ locations is through exhaustive search. Howev% boundaries of the spectrum. A simple way to alleviate this
some qualitative conclusions can be drawn by inspectionE(?IIZ .

. . wback is to decrease the pilots’ distance at the edges, as
F|gs.f2 ar:_d 3 fV\;E'Ch SSOW _the_ BdMSESfol_rdI\I/!LE and MMSEHndicated in Fig. 3. In conclusion, in the presence of suppressed
as afunction ot the subcarrier Index. Sold ines represen ceérriers, the minimum BMSE can be achieved with nonuni-
oretical results as given by (30) and (35), whereas vertical b

el ilots.
indicate the pilots’ locations. The operating conditions in Fig. ég: y Zp;C:vesptlhoéstotal BMSE versdsfor MLE with N —
are as follows. 9. —

) ] 512, N, = 216 and SNR= 10 dB. The upper curve corre-
i) The channel has an exponential power delay proffle= sponds to 28 pilots at the locations in (42), whereas the lower

_exp(=k/10),k =0,1,..., L — 1, with L = 20. curve corresponds to 44 pilots at
i) DFT size N = 512.

iii) Modulated subcarrier8 N, + 1 = 433. typ = —215+10m 0<m < 43. (43)
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Fig. 4. Twwr versus the channel lengfhwith N, = 28, 44. Fig. 5. T'mmser versus the channel lengfhwith N, = 28, 44.

2.5 " T T

As expected, the estimation accuracy improves as the numl
of pilots increases and the channel length decreases. Note 1
I'vrr shows a rapid growth as approachesy,,. This indicates 0
that settingV,, = L, as is done in [10], may be restrictive.
Fig. 5 shows the total BMSE versiisfor MMSEE under the
same operating conditions as in Fig. 4. Again, an exponenti g
power delay profile as in Figs. 2 and 3 is assumed. Compar5, 1S
with Fig. 4, it is seen that the growth of BMSE is limited As E‘

N=512
NF28

SNR=0dB

SEE

approachesy,,.
The ratioT'yLe/T'MmsEr versusL is shown in Fig. 6 for 10
N, = 28 with SNR as a parameter. It is seen that MLE ani

MMSEE have comparable performance at intermediate/hi¢ L
SNR values, provided that the number of pilots is sufficientl [ ) o o
larger than the channel length. However, the MMSEE i s 10 15 20
superior either at low SNR or fat close to/V,. As mentioned

in the introduction, this superiority comes from the knowledge

[ =]
1y

Channel length, L

of the covariance matri€;, and the noise levet?. Fig. 6. Taye/Tuuses Versus the channel lengthwith N, = 28.
V. SIMULATION RESULTS wheres; = E{A%}. The phase shift on each path is
Computer simulations have been run to check and extend the ;angor_mjl)(’)d'Str'bUted ovef0, 2 ), and the channel length

analytical results of the previous section. The simulated system v

is as follows ) The channel is static over the OFDM symbol duration

[7]- A new channel is generated at each simulation run,

A. System Parameters and the system performance is averaged over the CIR

. _ realizations.
i) DFT size V. = 2048. vi) Two configurations are considered for the pilots.
ii) Modulated subcarrier8 N, + 1 = 1801. 1) N, = 151, with pilots’ locations at
iii) There is a cyclic prefix of 50 samples.
iv) The channel hasL paths, with path delays of im = —900+12m 0<m < 150. (46)

0,1,...,L — 1 samples. The amplitudel; of each
path varies independently of the others, according to a
Rayleigh distribution with an exponential power delay

2) N, = 76, with pilots’ locations at

orofile, i.e.. im=—900+24m 0<m<75. (47)
The first case corresponds to the standard for dig-
E{A{} =exp(—k/10) k=0,1,...,L—1.  (44) ital TV [15].
_ vii) The energy of the useful signal (including the pilot tones)
Correspondingly, we have at the DFT output is normalized to unity. Correspond-

ingly, the SNR equal$/o?, whereo? is the variance of
Cy, = diag{o},07,...,07 1} (45) the Gaussian noise.
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N=2048

N,=900

N=151, L=40 ,
) U

2] w
|2 Y |2
E 10 E 10
03 | OMLE 0f b OMLE
F O MMSEE 3 O MMSEE
L 2 RRE L ¢ RRE ]
I 4 LE B [ LE o
10.4‘..\1\.<‘1.\l(\.\x;[1».‘\.\.\ 10-4‘All‘\ll\l\lv‘\ll\‘l\i\‘\l\l
0 5 10 15 20 25 30 0 5 10 15 20 25 30
SNR, dB SNR, dB
Fig. 7. Total BMSE versus SNR with, = 151. Fig. 8. Total BMSE versus SNR witl, = 76.
B. Performance Comparisons | F — r .
Performance comparisons have been made in terms of total C ]
BMSE and symbol error rate (SER). Figs. 7 and 8 show the A N=2048 ]
total BMSE versus SNR for MLE, MMSEE, and the estimators 2 N=900 |
proposed by Rinne and Renfors (RRE) [6] and by Li (LE) [9]. L N=151, L=40 §
The RRE makes a piecewise-linear interpolation of the type —
- Z(m)—Z(m—1 . 10t E
A(n) = Z(m - )+ 22D g : |
tm — tm—1 3 ]
I S0 S 1. (48) ﬁ
A . _
The estimator in [9] holds for a general time-varying channel. 3 ,
With a static channel, it boils down to a cardinal interpolation
between pilots 0 F . -
MLE -
Np—1 O MMSEE
H(n) = Z Z(m)prr(n —mA) (49) - °RRE 1
m=0 - ¢ LE i
. IS (o
with
1 sin(mn/A) Y I Y U E I RS
pLE(n) = Tro2 " /A (50) 0 5 10 15 20 25 30
andA is the pilots’ spacing. Note that the LE needs knowledge SNR, dB

of the noise variance?. In the simulations shown in Figs. 7—
10, it is assumed that? is perfectly known.

The pilots in Fig. 7 are 151, whereas in Fig. 8, they are 76.
Marks indicate simulations. Solid lines represent theoretical re-Figs. 9 and 10 show the influence of the estimation accuracy
sults only for MLE and MMSEE, whereas for RRE and LE, thepn the SER. The symbols are taken from a QPSK constellation,
are drawn to make them easier to read. It is seen that MMSRERd the operating conditions are the same as in Figs. 7 and 8.
has the best performance at low SNRs. At intermediate and higie curve labeled ideal channel information (ICI) corresponds
SNRs, on the other hand, MLE and MMSEE are comparabte. perfect knowledge of the channel transfer function at the re-
The loss of LE from MLE and MMSEE is approximately 6 dBceiver. It is seen that MLE and MMSEE have virtually the same
in Fig. 7 and 3 dB in Fig. 8. As for the RRE, it exhibits a floomperformance at all SNRs. The loss from ICl is 1 dB in Fig. 9 and
that worsens as the number of pilots decreases. 2 dB in Fig. 10.

Fig. 9. SER versus SNR witly,, = 151.
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Hence, the MSE foH (n) is

L—1L-1

’YMLE(”) _ 02 Z Z [D—l]kmlejQﬂ'n(m—k)/N. (A3)

k=0 m=0

Next, we show thaff,;.; achieves the CRLB. To this end,
we observe thaHl is a linear transformation df [see (10)]. As
estimation efficiency is maintained over linear transformations
[13, p. 47], it suffices to demonstrate trmw is an efficient

é estimator. Accordingly, we first compute the CRLB flrand
then, we compare it with the MSE &y k.
Call hg andh; the real and imaginary componentshgfand
1o* definep = (hLhY)T. The components of the Fisher informa-
tion matrix fory are given by
dln A(Z; ) }
F,, =-F{—""% A4
e { I ()¢ () (A
whereA(Z; ) is the probability density function o for Z,
o* givengp
0 5 10 15 20 25 30 AZ:p) 1
SNR, dB )= (o)™
1
Fig. 10. SER versus SNR with, = 76. X eXP{—g[Z - BR"[Z - Bh]} - (A5)
V1. CONCLUSION Substituting (A5) into (A4) yields
Two channel estimation schemes for OFDM systems have o2 {RG{D} —Im{D}} (A6)
been compared. The main advantage of MLE over MMSEE o2 [Im{D} Re{D}

is that it does not require knowledge of the channel statistiﬁ;hereD is the matrix defined in (14). Then, we have
and the SNR, and therefore, it is simpler to implement. On the '

other hand, under certain operating conditions, the MMSEE -1 _ 0_2 Re{(D™'} —Im{D™!'} (A7)
has better accuracy as it exploits prior information about the T2 Im{Dfl} Re{Dfl} )
chahnel. Specifically, the following has been found. . The CRLB is given by
i) The channel estimates at the edges of the bandwidth are
worse than those in the middle. A possible remedy is to CRLB(h) = tr{F~!} (A8)
adopt a denser pilot spacing at the edges. o . o
i) MMSEE performs better than MLE at low SNR. where t{ - } indicates the trace of a matrix. Substituting (A7)

iii) At intermediate and high SNRs, the two schemes haJgte (A8) and bearing in mind tha™" is Hermitian produces
cpmpgrable_ performance, provided thgt the number of CRLB(h) = 02tr{D—1}. (A9)
pilots is sufficiently larger than the duration of the CIRs.

Comparisons have also been made with the estimators p@n the other hand, from (8) and (13), it follows thaf;.r has

posed in [6] and [9]. It turns out that the loss in performance ebvariance matrix
LE with respect to MLE and MMSEE is limited, whereas that B

s . - . C. =D 1. (A10)
of RRE may be significant, unless the number of pilots is suffi- h

ciently high. Comparing (A9) with (A10), it follows that the variance of
hyirg coincides with the CRLB, and this concludes the proof.
APPENDIX A
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