
Elliptic Curve Cryptography Engineering

ALESSANDRO CILARDO, LUIGI COPPOLINO, NICOLA MAZZOCCA, AND LUIGI ROMANO

Invited Paper

In recent years, elliptic curve cryptography (ECC) has gained
widespread exposure and acceptance, and has already been in-
cluded in many security standards. Engineering of ECC is a com-
plex, interdisciplinary research field encompassing such fields as
mathematics, computer science, and electrical engineering. In this
paper, we survey ECC implementation issues as a prominent case
study for the relatively new discipline of cryptographic engineering.
In particular, we show that the requirements of efficiency and se-
curity considered at the implementation stage affect not only mere
low-level, technological aspects but also, significantly, higher level
choices, ranging from finite field arithmetic up to curve mathematics
and protocols.

Keywords—Cryptographic engineering, cryptography, elliptic
curves.

I. INTRODUCTION

After two decades of research and development, elliptic
curve cryptography (ECC) [6] has now gained widespread
exposure and acceptance, and has ultimately moved from
being an interesting mathematical construction to a well-es-
tablished public-key cryptosystem already included in nu-
merous standards and adopted by an increasing number of
companies. In fact, ECC is no longer new, and has withstood
in the last years a great deal of cryptanalysis and a long se-
ries of attacks, which makes it appear as a mature and robust
cryptosystem at present.

ECC has a number of advantages over other public-key
cryptosystems, such as RSA, which make it an attractive al-
ternative. In particular, for a given level of security, the size of
the cryptographic keys and operands involved in the compu-
tation of EC cryptosystems are normally much shorter than

Manuscript received October 29, 2004; revised April 16, 2005. This work
was supported in part by the Italian National Research Council (CNR), in
part by Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR),
and in part by Regione Campania, within the framework of following
projects: SP1 Sicurezza dei documenti elettronici, Gestione in sicurezza
dei flussi documentali associati ad applicazioni di commercio elettronico,
Centri Regionali di Competenza ICT, and Telemedicina.

The authors are with the Computer Science Department, University Fed-
erico II, Naples 80125, Italy (e-mail: acilardo@unina.it).

Digital Object Identifier 10.1109/JPROC.2005.862438

other cryptosystems and, as the computational power avail-
able for cryptanalysis grows up, this difference gets more and
more noticeable [6]. This is an advantageous condition es-
pecially for applications where resources such as memory
and/or computing power are limited. Among these appli-
cations, the mobile computing area [26], with its ever in-
creasing deployed base, is of extreme interest.

From the mathematical standpoint, an elliptic curve is the
solution set to the bivariate polynomial equation ,
where is of total degree 3, and is irreducible.
In cryptography we consider particular equations and partic-
ular (finite) fields over which curves are defined. The points
on the curve form a commutative group. What makes elliptic
curves particularly attractive for cryptographic applications
[8], [9] is that the discrete logarithm problem in elliptic curve
groups is computationally hard. Moreover, it is “harder” than
in groups previously considered, thereby allowing shorter
key lengths.

However, the actual application of ECC, and the practical
implementation of cryptosystem primitives in the real world
constitute a complex and undoubtedly interdisciplinary
research field, involving mathematics and computer
science as well as electrical engineering. The different
implementation aspects related to the EC cryptosystem are
pictorially shown in Fig. 1. Alternative choices are available
for building an EC-based cyptosystem at different levels,
which roughly correspond to the horizontal layers shown in
the figure. These range from the investigation of protocol
robustness to software and hardware implementation of
the underlying curve and finite fields arithmetics. Even
though each of these aspects is often studied in isolation and
constitutes a complex subject of interest in itself, it would
be improper to say that layers of Fig. 1 are a hierarchical,
unidirectional decomposition of the ECC engineering as-
pects. The two vertical requirements of implementation
efficiency and implementation security make in fact the
horizontal layers in the figure tightly interdependent. In
general, the role of the implementation efficiency require-
ment (i.e., the possibility to achieve suitable levels of
execution time, resources required, power consumed, costs,

0018-9219/$20.00 © 2006 IEEE

PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006 395

Fig. 1. Implementation aspects of ECC.

along with flexibility and reusability of design solutions)
is rather clear: a mathematical construction with practical
applications, such as a cryptographic algorithm, has no
real interest, in an engineering sense, as long as methods
for a feasible implementation are not available. That is
probably the reason why public-key cryptography was not
devised before the last decades of the 20th century. What is
somewhat still implicit in the overall picture concerns the
security aspect and is related to the fact that, surprisingly,
implementation generates a significant, perhaps crucial
portion of the real security risk. In fact, it is widely recog-
nized that most of the threats inherent in real-world security
infrastructures stem from how we perform cryptographic
operations on secret data rather than from the intrinsic math-
ematical strength of the cryptosystem. As a consequence,
architectural and implementation details, which normally
take on a marginal role and seemingly just affect perfor-
mance, are of crucial importance, as they could open the
door to many real-world attacks in a number of nontrivial
and often unforeseen ways.

In this paper, we show how these two aspects, which can
be grouped under the label of cryptographic engineering,
have a crucial role in steering design choices at all layers of
Fig. 1 and reference several proposals found in the technical
literature where the choices made at horizontal layers are
driven “vertically” according to cryptographic engineering
requirements. We start in Section II by reviewing the funda-
mental general requirements of cryptographic engineering in
practical implementations. In Section III we give an overview
of the existing implementation-specific security risks. Math-
ematical foundations and standards for ECC are introduced
in Section IV. A review of implementation techniques and
challenges for elliptic curve arithemetic and the underlying
finite field arithmetic are given in Section V and Section VI,
respectively. Section VII concludes the paper with some final
remarks on elliptic curve cryptography design.

II. CRYPTOGRAPHIC ENGINEERING

Generally speaking, the strength of a public-key cryp-
tosystem is directly related to the type of the one-way func-
tion it uses and the length of the cryptographic keys. With
the computing power and the theoretic knowledge avail-
able today, we find that inverting a one-way function—the
scalar multiplication for the case of EC cryptography—is a
practically intractable problem. It is interesting to note that,
for hard problems commonly used in cryptography, such as
the RSA factoring problem and the elliptic curve discrete

logarithm problem, this is just conjectured to be true, as no
mathematical proof exists about the intrinsic complexity of
such problems.

On the other hand, many specific algorithms exist to solve
cryptographic hard problems used for public-key cryptosys-
tems, and often their levels of computational complexity
are pragmatically taken as a measure of the cryptosystem
strength, even though it is not excluded that more efficient
algorithms may exist. It has also been found that many fea-
sible methods exist to attack particular instances of the hard
problems (for example, the discrete logarithm problem over
supersingular elliptic curves). The choice of the underlying
mathematics, domain parameters, and key sizes is strongly
influenced by such results when new cryptographic schemes
and standards are defined. As long as all these choices are
made appropriately, and no breakthroughs in number theory
or computing technologies are achieved, the key size is the
cryptosystem parameter that can be used for scaling the ro-
bustness of the cryptosystem over time or according to actual
application needs. In fact, the key size usually affects the
complexity of the underlying cryptographic hard problem,
and thus determines the overall mathematical strength of the
cryptosystem. In principle, we could obtain a cryptosystem
as secure as we want by just increasing the key length at will.

However, in practical applications, there are some other
considerations to do. First, in addition to being mathemati-
cally strong, the cryptosystem should be practically feasible.
In fact, implementation efficiency depends on key sizes, as
the cryptosystem security, although they follow different
laws in general. A mathematically strong cryptosystem
whose implementation requires prohibitive computation
resources is of no practical utility.

In a wider sense, implementation efficiency could be seen
as the property that allows a particular design solution, either
software or hardware, to be used, and reused, in a scalable,
modular, and flexible way. Most of these requirements are
inherent in cryptographic algorithms and applications. In
fact, the criteria of reusability and scalability are of funda-
mental importance for the design of cryptographic blocks,
since the operand sizes, usually much larger than in normal
applications, may significantly change depending on the
required level of security or the specific cryptosystem. A
design solution might turn out to be useless if not conceived
for effectively respond to changes in operand sizes or algo-
rithm parameters. This is mainly a problem for hardware
architectures and is most likely to happen in the case of EC
cryptography, since, from an implementation viewpoint,
there are many tempting possibilities to exploit specific,
parameter-dependent optimizations that work fine only
for particular instances of the cryptosystem. Most recent
proposals are deliberately oriented to emphasize scalability
and reusability of cryptographic architectures, aiming at
solutions that are parameter-independent, data length-inde-
pendent, flexible and unified (in the sense that they allow
heterogeneous operations, such as and
arithmetics, to be computed by a single unit).

But there is another dimension in cryptographic engi-
neering, distinct from mere implementation efficiency, that

396 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

only recently has been fully recognized. This dimension
has essentially to do with security and stems from the fact
that, unfortunately, we cannot think of the implementation
of a cryptographic primitive holding secret data (e.g., an
integrated circuit card) as a perfect black box. Implemen-
tations do leak sensitive information, and such leakage
might be far more significant than a possible unforeseen
mathematical flaw in a cryptographic one-way function. In
other words, cloning a smart card may be not as difficult as
breaking the internal public-key algorithm, no matter how
mathematically strong it is.

Both implementation efficiency and implementation
security are essential aspects of cryptographic engineering,
which we could indeed define as the science of translating
cryptographic algorithms into feasible and secure design
solutions.

One could easily recognize that cryptographic engineering
is concerned with the vertical requirements shown in Fig. 1.
Its role for real security applications is at least as important as
mere theoretical concerns and it is now widely addressed in
the technical literature, including the relatively new applica-
tion of ECC. In the rest of this paper we will show how cryp-
tographic engineering requirements influence design choices
at all layers of Fig. 1, including definition of higher level al-
gorithms and curve parameterizations.

III. IMPLEMENTATION-SPECIFIC ATTACKS

In this section we give an overview of the existing at-
tacks that can be used for compromising tamper-resistant
cryptographic devices based on implementation-specific
characteristics rather than mathematical properties of the
cryptosystem attacked. The study of implementation-specific
attacks is a fundamental part of cryptographic engineering
and is essential for the design of real-world cryptographic
devices.

Implementation attacks are usually divided into invasive
and noninvasive attacks. With invasive attacks the cryp-
tographic device is physically tampered with using some
special equipment. A general methodology for hardware
devices consists in depackaging the chip and reverse engi-
neering the silicon layout by means of optical microscopes
and microprobing workstations. More advanced techniques
are based on focused ion beam (FIB) workstations, elec-
tron-beam testers (EBT), and infrared lasers. Invasive
attacks require a specialized laboratory and time-consuming
reverse engineering operations and they always destroy the
packaging of the card. On the other hand, they require very
little initial knowledge and usually work with a similar set
of techniques on a wide range of products [72].

Noninvasive, or side-channel attacks are based on the
general idea of measuring some side-channel information
on tamper-resistant devices, such as power consumption
or timing, and attempting to infer secret keys from such
information. Noninvasive attacks may be particularly dan-
gerous. In fact, although the attack requires physical access
to the device, usually it is not evident so that it is unlikely
that the validity of the compromised data will be revoked

before they are abused. In addition, side-channel attacks
can be mounted with relatively inexpensive equipment.
On the other hand, most noninvasive attacks require some
preliminary knowledge of hardware and software aspects of
the attacked device.

Noninvasive attacks can be divided into the following cat-
egories.

• Timing Analysis Attacks. Timing attacks [1] are based
on measuring the time that the unit under attack re-
quires to perform specific operations. They are based on
the fact that, in straightforward implementations, many
steps with different execution times may or may not be
executed depending on the handled data, including se-
cret keys.

• Power Consumption Attacks. Power attacks [2] require
the interpretation of power consumption measurements
collected during cryptographic operations and are based
either on Simple Power Analysis (SPA) or Differential
Power Analysis (DPA). SPA can be used to break cryp-
tographic implementations in which the execution path
depends on the data being processed, similar to timing
attacks. The information leakage is usually tightly cor-
related to operand values and hamming weights. DPA
attacks use statistical analysis and error correction tech-
niques to extract information correlated to secret keys.
Public-key algorithms, including EC algorithms, can be
analyzed using DPA by correlating candidate values for
intermediate results with power consumption measure-
ments.

• Electromagnetic Attacks. Electromagnetic attacks [3],
[4] are based on the same principle of power attacks
applied to the analysis of electromagnetic radiation.
They are classified into Simple Electromagnetic Anal-
ysis (SEMA) attacks and Differential Electromagnetic
Analysis (DEMA) attacks.

• Fault Analysis. Fault Analysis techniques [11] consist
in tampering with a device and making it perform some
faulty computation that, when properly analyzed, may
leak information about the secret parameters involved
in the computation. Faults are induced by using heat,
pressure, external electromagnetic fields, clock glitches,
or power supply transients.

Many techniques exist to thwart implementation attacks.
Most of them work at the technology level, including, for
example, passivation layers, on-chip sensor meshes, radi-
ation detectors, and power and clock frequency monitors.
They are at a large extent decoupled from the characteristics
of the particular cryptographic primitive being designed and,
consequently, they are not specific to the case of ECC imple-
mentation. However, in recent years it has been recognized
that significant vulnerabilities can stem from high-level
algorithmic and architectural aspects as well, with special
emphasis on side-channel attacks. Many countermeasures
working at such levels have thus been proposed, and they
are usually specific to the cryptographic algorithm being im-
plemented. As the next sections will show, they multiply the
available design choices and raise a number of interesting
tradeoffs and issues for ECC engineering.

CILARDO et al.: ELLIPTIC CURVE CRYPTOGRAPHY ENGINEERING 397

IV. ECC: MATHEMATICS AND STANDARDS

A. ECC Mathematics

ECC is based on the discrete logarithm problem applied to
the Abelian group formed by the points of an elliptic curve
over a finite field. The essential security foundation of EC
cryptosystems relies on the (supposed) absence of a subexpo-
nential algorithm for solving the discrete logarithm problem
over cryptographic curves [6], [8], [9].

In terms of mathematical formulas, elliptic curves used in
cryptography are defined over a finite field by the Weier-
straß equation

The set of points , along with the point at
infinity , form an Abelian group, denoted with , where

is the identity element (i.e., ,); the
inverse of is ;
if then ; given and

with , is
computed as

with

and .
In cryptography we use two main families of elliptic

curves, according to the base field over which the curve
is defined. In particular, for , , the general
Weierstraß equation may be simplified to

(1)

with . Taking ,
, and in the general Weierstraß equation, the

sum of and (with) is
given by where

and (2)

with if and with
if .

For the equation for (nonsupersingular) el-
liptic curves is given by

(3)

with . Again, the sum of and
(with) is given by where

and
(4)

with if and with
if .

The number of points of is called the curve order and
is denoted with . The curve order can be computed
in polynomial time by Schoof’s algorithm [39] for general
curves, and more efficiently by Satoh’s technique [40] for
curves of small characteristics, e.g., characteristic two.

Given a point on the curve and an integer , a
scalar multiplication on the curve is obtained as

(5)

The order of the point is the smallest integer such that
. Note that, if and are integers, then if

and only if .
Given a point of order and a point , the elliptic curve

discrete logarithm problem (ECDLP) consists in finding an
integer , if any, such that . The intractability of
ECDL problem is the foundation of the EC cryptosystem.
There are several algorithms to solve it, such as the Pollard-

method [63], and none of them is subexponential for ap-
propriately chosen curves.

For general elliptic curves there are cases in which
subexponential algorithms do exist, making special at-
tacks possible. In particular, it is worth mentioning the
Menezes/Okamato/Vanstone (MOV) reduction attack [31],
the Smart/Araki-Satoh/Semaev attack [65], and the Weil
Descent attack [54], all working under particular hypotheses
on the attacked curves. These mathematical results are
fundamental in that they have affected the design choices for
protocols and standards used in real-world applications. For
example, due to Menezes, Okamato, and Vanstone’s result
[31], supersingular curves are not used in applications. In
fact, formulas for point operations could be significantly
simplified for the case of such curves [60], particularly over

and, hence, supersingular curves would lead to
more efficient implementations. Nevertheless, as a result of
the MOV reduction attack, it is possible to have subexpo-
nential attacks against supersingular elliptic curves, whereas
the best-known attacks against nonsupersingular elliptic
curves have still an exponential complexity. Standards
consequently exclude the use of supersingular curves.

However, as mentioned in the introductory sections, effi-
ciency and security measured only in terms of number theory
metrics may not be enough. Cryptographic engineering
requirements need to be taken into account. For example,
the scalar multiplication (5), which involves the secret key

, is typically reduced to a sequence of additions and dou-
blings, whose implementations typically behave in slightly
different ways. As a consequence, an attacker could exploit
sidechannel effects induced on a physical cryptodevice (pos-
sibly by passive, noninvasive observation techniques) to infer

398 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

this sequence and extracts the secret value while knowing
nothing about the discrete logarithm problem. In order for
such an attack to be practically mounted, it would be possible
to exploit, for example, timing, power, or electromagnetic sig-
nals. Many ways exist to defeat such types of attacks, and they
typically work at the implementation or technology level. But,
additionally, these merely practical secutity threats can also
imply such high-level responses as clever redefinitions of el-
liptic curve mathematics. These could be aimed, for example,
at yielding elementary operations at a lower level, such as
curve addition and doubling, that are indistinguishable when
implemented. To this purpose, several authors suggested to
use parameterizations for the elliptic curves that are different
fromthestandardWeierstraßequation introducedat thebegin-
ning of this section. In [19], authors represent points with the
Jacobi form as the intersection of two quadrics in . In [21] it
is suggested to use the Hessian form. These parameterizations
are not fully general, as opposed to the Weierstraß form. The
Jacobi form has always a point of order 4 and the Hessian form
a point of order3, and thus the cardinality of the corresponding
elliptic curve is a multiple of 4 and 3, respectively.

Other techniques used to improve implementation ef-
ficiency and implementation security, such as projective
coordinates and unified addition formulas [23], work on the
standard Weierstraß parameterization and will be considered
in Section V.

B. ECC Schemes and Standards

As an introductory example of a cryptographic scheme
based on the elliptic curve, we describe the EC Diffie–
Hellman scheme used for key agreement. It is by far the
simplest and the easiest to understand scheme, but it helps
focusing on the role of the ECDL problem in a real applica-
tion. Let Alice and Bob want to agree a shared key. As the
set of domain parameters, they have agreed a specific curve
and a base point . Alice generates a random secret value
and sends the result of the scalar multiplication to Bob
over an insecure channel. Similarly, Bob generates a secret
value and sends to Alice

Alice Bob

Then, Alice and Bob compute

respectively, thereby sharing the secret value .
The problem of recovering given and is
called the elliptic curve Diffie–Hellman problem (ECDHP).
It is known that the ECDHP is “included” into the ECDLP, in
the sense that if we can solve the ECDLP then we can solve
the ECDHP.

Other fundamental EC-based cryptographic schemes in-
clude the Elliptic Curve Digital Signature Algorithm (EC-
DSA), which extends the DSA to the case of elliptic curves,
the Elliptic Curve Integrated Encryption Scheme (EC-IES),

which basically works like static Diffie–Hellman followed
by symmetric encryption, the Elliptic Curve Menezes, Qu,
Vanstone (EC-MQV) scheme, which provides a mechanism
for authenticated key exchange.

In the recent years, such elliptic curve-based cryptographic
schemes have undergone a great deal of standardization ef-
forts. In fact, EC cryptography is particularly prone to imple-
mentations that lack interoperability, due to the large number
of parameters that must be chosen at different levels, from
the underlying finite fields to the high-level cryptographic
schemes. Among the other things, we need standardization in
the definition of formats for representation of fields elements,
curve points, cryptographic keys and so on. In addition, it
is important to have a collection of recommended special
curves and underlying finite fields in order to promote in-
teroperability and favor particular technical choices that are
appropriate from both a security and efficiency standpoint.

Among the main standards including ECC we cite the
IEEE P1363 Standard Specifications For Public-Key Cryp-
tography [41], the NIST Digital Signature Standard (DSS)
[42], the ANSI Public Key Cryptography for the Financial
Services Industry [43], [44], the OMA Wireless Transport
Layer Security Specification (WTLS) [45], the SECG SEC1
and SEC2 standards [46], [47].

For example, the NIST standard includes a collection of
recommended elliptic curves, private-key lengths, and under-
lying fields. It specifies how to represent field elements and
provides for random-generated curves and selected curves. In
particular, selected curves are Koblitz curves. The latter pro-
vision, along with several other recommendations, is made
mainly for implementation efficiency reasons.

V. ELLIPTIC CURVE ARITHMETIC

This section isolates the problem of computing elliptic
curve arithmetic, i.e., the second layer of Fig. 1. The basic
operation for any EC cryptosystem is the scalar multiplica-
tion (5) from both a security and a performance point of view.
The simplest way to implement it is to write as

and to use the following double-and-add algorithm:

Algorithm 1— Double-and-Add Algorithm

Given , , computes
.

CILARDO et al.: ELLIPTIC CURVE CRYPTOGRAPHY ENGINEERING 399

Fig. 2. Decomposition of elliptic curve arithmetic operations.

The double-and-add algorithm, as most alternative
methods, reduce the scalar multiplication to additions

and doublings of curve points.
In turn, these are reduced to additions, multiplications,
squarings, and inversions over the underlying finite fields
according to (2) for and (4) for as shown
in Section IV. Pictorially, the relation between the different
arithmetics is as shown in Fig. 2.

It is important to note that and , denote affine coor-
dinates and are just one of different ways for representing a
curve point . By using other representations it is possible
to obtain different formulas for additions and doublings
and thus a different count of additions, multiplications,
squarings, and inversions in field arithmetic (involved in the
right-hand part of the chain in Fig. 2). This is very impor-
tant for implementation efficiency reasons, as the different
field operations have in general very different levels of
complexity. In particular, the weight of field additions is
generally negligeable, and inversion is usually much more
complex than multiplication. For example, with affine coor-
dinates the formula for adding a curve point over
(4) is reduced to one field inversion, two multiplications
and one squaring (field addition has marginal influence).
Instead, we could use Jacobian projective coordinates [6],
[41]. These are obtained from affine coordinates as

, where is a nonzero element
of the underlying field. From the affine coordi-
nates are computed as . Jacobian
projective coordinates yield formulas for point addition and
doubling that require more multiplications and squarings
but do not require inversion at all, except for initial and final
conversions. For example, for the same addition of a curve
point over considered before, Jacobian projective
coordinates require 11 field multiplications and four field
squarings. Other types of coordinates have been proposed
and studied, including standard [6], Lopez–Dahab [37], and
mixed coordinates [38].

As projective coordinates trade a number of field multi-
plications for one inversion, whether to resort to projective
coordinates or to the affine ones critically depends on in-
version/multiplication weight ratio in the actual implemen-
tation. There are several ways to optimize field inversions
and multiplications for different fields and representations
(see Section VI), and these lead to various inversion/multipli-
cation weight ratios, which makes impossible to establish a

unique optimal design choice. In usual cases it turns out to be
more convenient to resort to projective or mixed coordinates.

The double-and-add Algorithm 1 requires about
point doublings (step 3) and point additions
(step 4). The latter contribution is essentially related to the
number of nonzero digits in . A different way to speed
up the computation of the scalar multiplication is to
work on the left-hand side of the chain in Fig. 2 by recoding
the integer in such a way that the number of nonzero
digits in it be lower. This makes the sequence of operations
necessary to build the th multiple of shorter than the
conventional double-and-add method, usually at the price
of doing some precomputation and storing some additional
quantities. For example, it is possible to group consecutive
bits of and work on bit “windows” rather than scanning
single bits as in the case of the double-and-add method
of Algorithm 1. This is done with the so-called -ary
method, which partitions the binary expansion of the integer

into fixed-length, -bit windows . It requires
the precomputation of general points additions,
and takes doublings and about additions.
A more efficient technique exploits sliding windows in the
representation of , which are similar to the -ary method
but work on nonfixed partitions of [71]. In particular,
with a signed sliding window technique we can represent

as a sum of signed components: with
and . The

use of the signed representation and thus the possibility of
subtracting multiples of to partial results allows us to
further reduce the number of point additions/subtractions
and is particular appealing for elliptic curves, since in this
case the negation comes practically for free.

Similar principles apply to the so-called nonadjacent form
(NAF) [16], [48], [50], which represents as
with . It has been shown that each integer
admits a uniquely determined NAF, which is the signed bi-
nary representation of minimal Hamming weight and has an
expected density of 1/3 [51]. The binary NAF technique can
be generalized to the case of width-w nonadiacent form [52].

It should be noted that all these techniques tend to reduce
the number of additions/subtractions (step 4 in Algorithm 1)
rather than the number—or the weight—of doublings (step
3). Particular advantages for implementation of curve arith-
metic come from special curves over , known as
Koblitz curves [49], that are obtained from (3) with and

. The main property of such curves is that if
is a point on a Koblitz curve, then is also a point on
the curve and in addition we have (Frobe-
nius map) where . It follows that the
multiplication of a point on the curve by the complex number

can simply be realized with the squaring of the and co-
ordinates of the point, which in normal basis representation
is as simple as a cyclic shift of the bits of the operands. We
can thus represent the integer with radix [48] that implies
replacing the doubling in the double-and-add method with a
less expensive multiplication by .

A similar idea, suitable for certain classes of curves over
, is the GLV method [64]. The method works for el-

400 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

liptic curves over possessing an endomorphism
whose characteristic polynomial has small coefficients. The
scalar is first decomposed into two “small” integers and

(called a balanced length-two representation of). The
point-multiplication is then computed as

, taking advantage of the simultaneous multiple
exponentiation technique known as the “Shamir’s trick.”

Other techniques exist to optimize the computation of
scalar multiplication for specific classes of curves. For
example, the technique used in [37] works for
and speeds up the computation of used in window
methods. Authors in [61] propose some formulas for com-
puting repeated doublings in projective coordinates that
work in combination with window methods. In [28] authors
use some techniques first introduced in [29] (including
the so-called Montgomery ladder) to speed up the scalar
multiplication process. In particular, they exploit the fact
that, given two elliptic points and whose difference
is fixed and equal to , the coordinate of can be
computed in terms of the coordinates of , , and . In
[62] the halving operation (i.e., given , the computation of

such that) is proposed to replace the doubling
operation in the scalar multiplication process.

Projective coordinates, sliding windows, nonadiacent
form, etc. are all techniques working on the curve arithmetic
layer of Fig. 1 for speeding up implementation. However,
again, we have to point out that design choices made at this
level do not affect only implementation performance but
also implementation security. In fact, the double-and-add
Algorithm 1 is a representative example of how naïve ap-
proaches to computing sensitive operations may lead to
implementations that potentially leak secret data [5]. The
formulas for doubling and adding points on a Weierstraß
elliptic curve entail different groups of operations, and a
simple power analysis (i.e., a simple side-channel analysis
using power consumption as the side channel) will produce
different power traces that may reveal the bits of . One
way to circumvent the leakage can be to have an algorithm
that behaves regurarly whatever the processed data. This is
done, for example, in [24], where a double-and-add-always
approach is taken: here, a (possibly meaningless) addition
is always performed at step 4 of Algorithm 1 irrespective
of the value of . In [25] the Montgomery ladder is used
for scalar multiplication mainly as a measure against power
and fault attacks for its intrinsically regular behavior. In [23]
the addition formulas are rewritten in such a way that point
addition and point doubling are no longer distinguishable.
In [27] the authors propose a method which is applicable
on general curves over prime-order finite-fields and works
without precomputed points. Among the most promising
techniques for defeating side-channel effects we cite ran-
domization techniques, which are particularly effective for
differential attacks [5]. Broadly speaking, such techniques
work by obfuscating algorithm inputs and operands in such
a way that the implementation behavior is weakly related
to the actual values of secret data [7]. Note that these tech-
niques do not necessarily yield implementations optimized
for performance.

VI. FINITE FIELDS ARITHMETIC

Elliptic curve operations are ultimately reduced to oper-
ations over finite fields (see Fig. 2). As a consequence, the
implementation efficiency of ECC crucially depends on the
performance of finite field computations.

A finite field, also called a Galois field (GF), is just a field
with a finite number of elements (field order). A fundamental
result on the theory of finite fields states that there exists a fi-
nite field of order if and only if is a prime power. For each
prime power there is essentially only one field of order .

There is a large variety of choices for finite fields to use as
the underlying fields in ECC. Popular choices include fields
of the type where is a large prime. Arithmetic for
such fields can be implemented as the usual modular arith-
metic and can take advantage of a large number of techniques
already found in the literature and previously developed for
other cryptosystems such as DSA and RSA. In particular,
for general primes the most efficient implementation tech-
nique is based on Montgomery arithmetic [55], which uses
a special representation of numbers to obtain efficient im-
plementation of modular multiplication. However, since the
number is a constant in the case of an elliptic curve cryp-
tosystem, it is common in standards to choose primes of a
special form that allows a drastic optimization for modular
reduction. These include Mersenne numbers and generalized
Mersenne (GM) numbers [32]. All major standards include
GM numbers [42]–[47].

Much important are also nonprime fields, i.e., fields of the
form where is a prime and . In partic-
ular, standards use binary fields . Special nonprime
fields have also been proposed, including optimized exten-
sion fields (OEFs) [53] With OEFs the field parameters can
be chosen such that they are a good match for the processor
on which the field arithmetic is to be implemented. In par-
ticular, it is often an advantage to choose an OEF
such that the prime can be represented within one register
of the target processor. From a security standpoint, it should
be pointed out that there exist fields that are “weaker” than
others. This is the case for composite fields of characteristic
two [54].

Representation of field elements is particularly important
for implementation efficiency. While elements of
are naturally reviewed as integer numbers, there are many
ways of representing elements in fields. We dis-
cuss here the usual case of binary finite fields (i.e., fields
of the form). Such fields can be viewed as a
vector space of dimension over . Thus, there
is a set of elements in
such that each can be written uniquely
in the form , where . The set

is called a basis of and
defines a representation of the elements in . In
particular, the so-called polynomial basis are defined by
irreducible polynomials (where

) of degree over . With a polynomial
basis, field elements can be thought of as binary polynomials
of degree less than and the field operations can be carried

CILARDO et al.: ELLIPTIC CURVE CRYPTOGRAPHY ENGINEERING 401

out formally by using the conventional polynomial addition
and multiplication modulo . From an implementation
viewpoint, it is a good choice to use irreducible polynomials
of low weight (usually trinomials or pentanomials) with
low order nonleading terms, as most standards do (see
for example [42]). A different possibility is to use normal
bases, i.e., bases of the form , where

. It is always possible to find such a basis
[33]. The representations based on normal bases have the
computational advantage that squaring a field element is
as simple as shifting its components. Addition is carried
out by bitwise XOR-ing elements’ components, as in the
polynomial basis case. On the other hand, multiplication is
in general a more complicated operation, unless a special
class of normal bases, called Gaussian normal bases, is used
[41]. A discussion of normal bases and a characterization of
their existence are given in [34], [35]. Other types of bases
have been proposed for addressing specific performance
issues, for example the problem of efficiently computing
field inversion/division [36].

There is a plethora of research works dealing with the
problem of efficiently computing arithmetic in finite fields.
In general, there are proposals for implementation of ar-
bitrary operations as well as techniques that are highly
optimized for specific parameters such as the irreducible
polynomial used for representing elements in
the polynomial basis. This is especially true of field mul-
tiplication [56], [57], [68]–[70]. Many different proposals
exist for field inversion/division [36], [59], [66], [67]. In
particular, there is an increasing interest in devising unified
hardware arithmetic architectures, allowing heterogeneous
field operations, such as multiplication or inversion in both

and , to be performed by single hardware
blocks. Much emphasis is also put on scalability, i.e., the
ability of reusing or replicating a unit in order to obtain an
arbitrary precision independently of the data path precision
of the single unit [57]. Indeed, in addition to computation
speed, flexibility and scalability play a fundamental role
for the vertical requirement of implementation efficiency.
For example, based on the extension of Montgomery al-
gorithm to the case [58], authors in [57] achieve
scalable and unified hardware architectures implementing
multiplication in and . Similarly, in [59] a
scalable and unified architecture is proposed for computing
Montgomery inversion in and . Further
works about unification include [73], [75], and [74]. In
[74], in particular, a change of representation in is
proposed to enable unified arithmetic based on Montgomery
operations. Implementation of finite fields arithmetic has
also important implications on power consumption, which
is a crucial aspect in resource-constrained environments
such as smart-cards and handheld devices. Much attention
has been recently paid to power efficient approaches for
implementation of finite field arithmetic [76].

VII. CONCLUDING REMARKS ON ECC DESIGN

The design of elliptic curve based cryptographic systems
implies a number of nontrivial challenges and tradeoffs.

Fig. 3. ECC design map.

Fig. 3 summarizes the factors involved in the design process
and their impact on the layers of the ECC engineering map.
First of all, the target computing environment is likely to
influence significantly the design process. This is especially
true of ECC, since it finds a natural application in re-
source-constrained systems, such as PDAs, mobile phones,
and smart cards. The overall available resources—processing
power, memory, power consumption—often determine the
functionality of the system designed and, in that respect, they
conflict with application requirements. For example, on a
smart card it is reasonable to implement ECC based signature
and encryption, but it is not so for curve generation.

On the other hand, the characterization of the target
application usually influences the way such resources are
exploited. In fact, different applications require different
cryptographic schemes and in turn involve the underlying
elliptic curve operations in different ways. As a result,
spending large efforts for improving the execution time of a
specific operation may or may not make sense. In addition,
the application scope and expected lifecycle have a consid-
erable impact on implementation efforts toward flexibility
and scalability. It is crucial to assess the level of flexibility
necessary in order for the designed system to respond to
changes in parameters/algorithms/schemes that are likely to
occur during its lifecycle. Similar observations hold for se-
curity requirements. Most security measures sketched in the
previous sections at all layers of the ECC design map have
their costs in terms of either execution time, area/memory
consumption, or technology processes and may or may not
be worth depending on the commercial value of the appli-
cation developed and the financial impact of the security
risk. This analysis should also take into account the costs of
known and potential attacks, generally not negligeable, as
well as the fact that such attacks must be separately mounted
for each cryptodevice to break.

Once the impact of computing environment constraints
and application requirements is assessed, a large number of
design choices must be addressed at each layer of Fig. 3, and,
correspondingly, many different tradeoffs can be recognized.
These include the following.

402 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

• Implementation efficiency versus implementation secu-
rity. As shown in the previous sections, at each layer
of the ECC design map there are a number of imple-
mentation options that are specifically related to the
problem of obtaining secure designs. For example, for
the implementation of elliptic curve arithmetic there
are many available algorithms in the technical litera-
ture (see Section V) that are deliberately conceived for
thwarting side-channel attacks. There measures often
entail nonoptimal time/area performance and, in some
cases, limit the generality of the implemented solutions.
While a slight penalty in performance is usually accept-
able in favor of security, compromising the flexibility
of the design solution would in general require a deeper
cost/benefit analysis.

• Time-to-market versus speed/flexibility/security. The
time-to-market is perhaps the major factor that impacts
the commercial value of a design solution. Special mea-
sures enabling implementation efficiency, flexibility,
and security are all likely to increase development
times with respect to straightforward approaches. On
the other hand, generic off-the-shelf solutions (IP
cores, software programs) could not meet such specific
requirements, or otherwise they could entail additional
costs.

• Execution time versus area/memory requirements. The
usual time versus area tradeoffs hold at many different
layers of ECC design map, including among the other
things double-and-add versus windowing methods,
scalar versus parallel field multiplicator, etc.

• Speed versus flexibility. As mentioned in the intro-
ductory sections, implementation of ECC offers many
tempting possibilities of exploiting parameter-specific
optimizations or particular standard prescriptions. For
example, the implementation of field multiplication
takes advantage of particular irreducible polynomials
used for representation, often suggested by standards
such as NIST [42].

The latter point highlights the impact of standard compli-
ancy on the design process. In fact, standards usually contain
many implementation-aware provisions, and many standard
parameters, such as curve type/coefficients, field order, etc.,
are defined with hardware or software implementation im-
plications in mind. Indeed, the implementation of ECC stan-
dards is probably very different from the implementation of
general ECC algorithms.

A design choice that takes on a particular importance
for elliptic curve based systems is the hardware/software
partitioning. Where the bound between hardware and soft-
ware should be placed significantly depends, again, from the
specific class of parameters adopted. For instance, imple-
mentation of arithmetic drastically benefits from
hardware acceleration due to its carryless nature, while for

arithmetic there are many efficent techniques for
software implementation. Whether to use dedicated hard-
ware blocks or not has considerable implications on design
budgets, time-to-market, flexibility, scalability, and even
security alongside mere time performace. Many research

works and commercial proposals suggest that generic hard-
ware support for field arithmetic and software control for
the higher layers could turn out to be a profitable choice for
usual applications, as it enables speed optimization of the
basic mathematical operations (e.g., field multiplications/in-
versions) while leaving room for flexibility, scalability and
“algorithmic” security of the overall design.

Below the layers of Fig. 3 are the design choices made
at the technology level. These include low-level protection
mechanisms (randomised clocking, noise generation, sensor
meshes, dual-rail logic etc.) and radical technology choices
such as the use of application-specific ICs (ASICs) or
field-programmable gate arrays (FPGAs), with significant
implications on security, flexibility, speed, costs. We have
not discussed the technology level here, since it is mostly
orthogonal to the classes of security applications designed
above it. Conventional techniques for production of crypto-
graphic devices and previous research investigations about
protection methods and implementation technologies (e.g.,
ASICs versus FPGAs) still apply to the case of ECC.

These concluding remarks highlight the fact that, although
ECC is now a mature and widely accepted alternative to
traditional public-key cryptosystems, engineering of ECC
is still an open research field and constitutes a complex,
interdisciplinary subject. This paper surveyed the most
significant aspects of ECC engineering at different levels
and showed that implementation efficiency and implemen-
tation security—the fundamental goals of cryptographic
engineering—are vertical requirements affecting not only
mere technological aspects considered at the implementation
stage, but also, significantly, choices at the higher levels,
ranging from finite field arithmetic up to curve equations
and algorithms, and security standards.

ACKNOWLEDGMENT

The authors would like to thank J. Großschädl for his com-
ments and valuable suggestions.

REFERENCES

[1] P. C. Kocher, “Timing attacks on implementations of
Diffie–Hellman, RSA, DSS, and other systems,” in Advances
in Cryptology—CRYPTO’96, N. Koblitz, Ed.. Heidelberg,
Germany: Springer-Verlag, 1996, vol. 1109, Lecture Notes in
Computer Science, pp. 104–113.

[2] P. C. Kocher, J. Jaffe, and B. Jun, “Differential power analysis,”
in Advances in Cryptology—CRYPTO’99, M. Wiener, Ed. Hei-
delberg, Germany: Springer-Verlag, 1999, vol. 1666, Lecture Notes
in Computer Science, pp. 388–397.

[3] K. Gandolfi, C. Mourtel, and F. Olivier, “Electromagnetic anal-
ysis: Concrete results,” in Cryptographic Hardware and Embedded
Systems—CHES 2001, Ç. K. Koç, D. Naccache, and C. Paar,
Eds. Heidelberg, Germany: Springer-Verlag, 2001, vol. 2162,
Lecture Notes in Computer Science, pp. 251–261.

[4] J.-J. Quisquater and D. Samyde, “ElectroMagnetic Analysis
(EMA): Measures and counter-measures for smard cards,” in
Smart Card Programming and Security (E-smart 2001). Heidel-
berg, Germany: Springer-Verlag, 2001, vol. 2140, Lecture Notes
in Computer Science, pp. 200–210.

[5] M. Joye, “Elliptic curves and side-channel analysis,” ST J. Syst.
Res., vol. 4, no. 1, pp. 17–21, Feb. 2003.

[6] I. Blake, G. Seroussi, and N. Smart, Elliptic Curves in Cryptog-
raphy. Cambridge, U.K.: Cambridge University Press, 1999, vol.
265, London Mathematical Society Lecture Note Series.

CILARDO et al.: ELLIPTIC CURVE CRYPTOGRAPHY ENGINEERING 403

[7] ——, Advances in Elliptic Curve Cryptography. Cambridge,
U.K.: Cambridge University Press, 2005, vol. 317, London Math-
ematical Society Lecture Note Series.

[8] N. Koblitz, “Elliptic curve cryptosystems,” Math. Comput., vol.
48, no. 177, pp. 203–209, 1987.

[9] V. S. Miller, “Use of elliptic curves in cryptography,” in Advances
in Cryptology—CRYPTO’85, H. C. Williams, Ed. Heidelberg,
Germany: Springer-Verlag, 1986, vol. 218, Lecture Notes in Com-
puter Science, pp. 417–426.

[10] R. Anderson, Security Engineering. New York: Wiley, 2001.
[11] I. Biehl, B. Meyer, and V. Muller, “Differential fault at-

tacks on elliptic curve cryptosystems,” in Advances in Cryp-
tology—CRYPTO 2000, M. Bellare, Ed. Heidelberg, Germany:
Springer-Verlag, 2000, vol. 1880, Lecture Notes in Computer
Science, pp. 131–146.

[12] E. Biham and A. Shamir, “Differential fault analysis of secret
key cryptosystems,” in Advances in Cryptology—CRYPTO ’97, B.
Kaliski, Ed. Heidelberg, Germany: Springer-Verlag, 1997, vol.
1294, Lecture Notes in Computer Science, pp. 513–525.

[13] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in Advances in Cryp-
tology—EUROCRYPT ’97, W. Fumy, Ed. Heidelberg, Germany:
Springer-Verlag, 1997, vol. 1233, Lecture Notes in Computer Sci-
ence, pp. 37–51.

[14] M. Joye, A. K. Lenstra, and J.-J. Quisquater, “Chinese remain-
dering based cryptosystems in the presence of faults,” J. Cryptol.,
vol. 12, no. 4, pp. 241–245, 1999.

[15] J. F. Dhem, F. Koeune, P. A. Leroux, P. Mestré, J.-J. Quisquater,
and J. L. Willems, “A practical implementation of the timing at-
tack,” in Smart Card Research and Applications (CARDIS 98),
J.-J. Quisquater and B. Schneier, Eds. Heidelberg, Germany:
Springer-Verlag, 2000, vol. 1820, Lecture Notes in Computer
Science, pp. 167–182.

[16] G. W. Reitwiesmer, “Binary arithmetic,” Adv. Comput., vol. 1, pp.
231–308, 1960.

[17] O. Eğecioğlu and Ç. K. Koç, “Exponentiation using canonical re-
coding,” in Proc. 1990 Bilkent Int. Conf. New Trend in Communi-
cation, Control, and Signal Processing pp. 188–194.

[18] K. Okeya, H. Kurumatani, and K. Sakurai, “Elliptic curves
with the montgomery form and their cryptographic applications,”
in Public Key Cryptography (PKC’00), J.-J. Quisquater and B.
Schneier, Eds. Heidelberg, Germany: Springer-Verlag, 2000,
vol. 1751, Lecture Notes in Computer Science, pp. 238–257.

[19] P. Liardet and N. Smart, “Preventing SPA/DPA in ECC system
using the Jacobi form,” in Cryptographic Hardware and Embedded
Systems—CHES 2001. Heidelberg, Germany: Springer-Verlag,
2001, vol. 2162, Lecture Notes in Computer Science, pp. 401–411.

[20] O. Billet and M. Joye, “The Jacobi model of an elliptic curve and
side-channel analysis” Cryptology ePrint Archive, Rep. 2002/125,
2002 [Online]. Available: http://eprint.iacr.org/2002/125.pdf

[21] M. Joye and J. Quisqiater, “Hessian elliptic curves and
side-channel attacks,” in Cryptographic Hardware and Embedded
Systems—CHES 2001. Heidelberg, Germany: Springer-Verlag,
2001, vol. 2162, Lecture Notes in Computer Science, pp. 412–420.

[22] N. Smart, “The Hessian form of an elliptic curve,” in Crypto-
graphic Hardware and Embedded Systems—CHES 2001. Heidel-
berg, Germany: Springer-Verlag, 2001, vol. 2162, Lecture Notes in
Computer Science, pp. 118–125.

[23] E. Brier and M. Joye, “Weierstrass elliptic curves and side-channel
attacks,” in Public Key Cryptography (PKC’02). Heidelberg,
Germany: Springer-Verlag, 2002, vol. 2274, Lecture Notes in
Computer Science, pp. 335–345.

[24] J. S. Coron, “Resistance against differential power analysis for el-
liptic curve cryptosystems,” in Cryptographic Hardware and Em-
bedded Systems—CHES 1999, Ç. K. Koç and C. Paar, Eds. Hei-
delberg, Germany: Springer-Verlag, 1999, vol. 1717, Lecture Notes
in Computer Science, pp. 292–302.

[25] M. Joye and S. M. Yen, “The Montgomery powering ladder,” in
Cryptographic Hardware and Embedded Systems—CHES 2002, B.
S. Kaliski, Jr., Ç. K. Koç, and C. Paar, Eds. Heidelberg, Ger-
many: Springer-Verlag, 2003, vol. 2523, Lecture Notes in Com-
puter Science, pp. 291–302.

[26] K. Lauter, “The advantages of elliptic curve cryptography for wire-
less security,” IEEE Wireless Commun., vol. 11, no. 1, pp. 62–67,
Feb. 2004.

[27] T. Izu and T. Takagi, “A fast parallel elliptic curve multiplica-
tions resistant against side channel attacks,” in Public Key Cryptog-
raphy, D. Naccache and P. Paillier, Eds. Heidelberg, Germany:
Springer-Verlag, 2002, vol. 2274, Lecture Notes in Computer Sci-
ence, pp. 280–296.

[28] J. López and R. Dahab, “Fast multiplication on elliptic curves
over GF (2) without precomputation,” in Cryptographic Hard-
ware and Embedded Systems, Ç. K. Koç and C. Paar, Eds. Hei-
delberg, Germany: Springer-Verlag, 1999, vol. 1717, Lecture Notes
in Computer Science, pp. 316–327.

[29] P. L. Montgomery, “Speeding the Pollard and elliptic curve
methods of factorization,” Math. Comput., vol. 48, no. 177, pp.
243–264, Jan. 1987.

[30] K. Okeya and K. Sakurai, “Power analysis breaks elliptic curve
cryptosystems even secure against the timing attack,” in Progress
in Cryptology—INDOCRYPT 2000, B. Roy and E. Okamoto,
Eds. Heidelberg, Germany: Springer-Verlag, 2000, vol. 1977,
Lecture Notes in Computer Science, pp. 178–190.

[31] A. Menezes, T. Okamoto, and S. Vanstone, “Reducing elliptic
curve logarithms to logarithms in a finite field,” IEEE Trans. Inf.
Theory, vol. 39, no. 5, pp. 1639–1646, Sep. 1993.

[32] J. Solinas, “Generalized Mersenne numbers” Dept. Combinatorics
and Optimizations, Univ. Waterloo, Tech. Rep. CORR99-06, 1999
[Online]. Available: http://www.cacr.math.uwaterloo.ca/

[33] R. J. McEliece, Finite Fields for Computer Scientists and Engi-
neers. Norwell, MA: Kluwer, 1987.

[34] D. Ash, I. Blake, and S. Vanstone, “Low complexity normal
bases,” Discrete Appl. Math., vol. 25, pp. 191–210, 1989.

[35] R. Mullin, I. Onyszchuk, S. Vanstone, and R. Wilson, “Optimal
normal bases in GF (p),” Discrete Appl. Math., vol. 22, pp.
149–161, 1989.

[36] M. Hasan, “Double-basis multiplicative inversion over
GF (2),” IEEE Trans. Comput., vol. 47, no. 9, pp. 960–970,
Sep. 1998.

[37] J. Lopez and R. Dahab, “Improved algorithms for elliptic curve
arithmetic inGF (2),” in Selected Areas in Cryptography. Hei-
delberg, Germany: Springer-Verlag, 1998, vol. 1556, Lecture Notes
in Computer Science, pp. 201–212.

[38] H. Cohen, A. Miyaji, and T. Ono, “Efficient elliptic curve ex-
ponentiation using mixed coordinates,” in Asiacrypt’98. Heidel-
berg, Germany: Springer-Verlag, 1998, vol. 1514, Lecture Notes in
Computer Science, pp. 51–65.

[39] R. Schoof, “Elliptic curves over finite fields and the computation
of square roots mod p,” Math. Comp., vol. 44, pp. 483–494,
1985.

[40] T. Satoh, “The canonical lift of an ordinary elliptic curve over a
finite field and its point counting,” J. Ramanujan Math. Soc., vol.
15, no. 4, pp. 247–270, 2000.

[41] Standard specifications for public-key cryptography, IEEE P1363
[Online]. Available: http://grouper.ieee.org/groups/1363/P1363/
index.html

[42] Digital signature standard (DSS), FIPS PUB 186-2, National Insti-
tute of Standards and Technology (NIST), 2000.

[43] Public key cryptography for the financial services industry: The
Elliptic Curve Digital Signature Algorithm (ECDSA), ANSI X9.62-
1998, American National Standards Institute.

[44] Public key cryptography for the financial services industry: Key
agreement and key transport using elliptic curve cryptography,
ANSI X9.63-2001, American National Standards Institute.

[45] Open Mobile Alliance, “Wireless transport layer security specifi-
cation (WTLS),” 2001.

[46] Standards for Efficient Cryptography Group (SECG), “SEC 1: El-
liptic curve cryptography,” 2000.

[47] Standards for Efficient Cryptography Group (SECG), “SEC 2: Rec-
ommended elliptic curve domain parameters,” 2000.

[48] J. A. Solinas, “Improved algorithms for arithmetic on a family
of elliptic curves,” in Proc. Advances in Cryptography, Crypto-97
1997, pp. 357–371.

[49] N. Koblitz, “CM-curves with good cryptographic properties,” in
Proc. Advances in Cryptography, Crypto-91 1992, pp. 279–287.

[50] D. Gordon, “A survey of fast exponentiation methods,” J. Algo-
rithms, vol. 27, pp. 129–146, 1998.

[51] F. Morain and J. Olivos, “Speeding up the computations on an el-
liptic curve using addition-subtraction chains,” RAIRO Inf. Theory,
vol. 24, pp. 531–543, 1990.

404 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

[52] J. Solinas, Department of Combinatorics and Optimizations,
University of Waterloo, “Improved algorithms for arithmetic on a
family of elliptic curves (revised)” Tech. Rep. CORR99-06, 1999
[Online]. Available: http://www.cacr.math.uwaterloo.ca/

[53] D. Bailey and C. Paar, “Optimal extension fields for fast arithmetic
in public-key algorithms,” in CRYPTO’98. Heidelberg, Germany:
Springer-Verlag, 1998, vol. 1462, Lecture Notes in Computer Sci-
ence, pp. 472–485.

[54] P. Gaudry, F. Hess, and N. P. Smart, “Constructive and destruc-
tive facets of weil descent on elliptic curves,” J. Cryptol., vol. 15,
no. 1, pp. 19–46, 2002.

[55] P. L. Montgomery, “Modular multiplication without trial division,”
Math. Comput., vol. 44, no. 170, pp. 519–521, 1985.

[56] A. Halbutoğullari and Ç. K. Koç, “Mastrovito multiplier for gen-
eral irreducible polynomials,” IEEE Trans. Comput,, vol. 49, no. 5,
pp. 503–518, 2000.

[57] A. F. Tenca, E. Savas, and Ç. K. Koç, “A design framework for
scalable and unified multipliers in GF (p) and GF (2),” Inter-
national Journal of Computer Research, vol. 13, no. 1, pp. 68–83,
2004.

[58] Ç. K. Koç and T. Acar, “Montgomery multiplication inGF (2),”
Designs, Codes and Cryptography, vol. 14, no. 1, pp. 57–69, 1998.

[59] A. A.-A. Gutub, A. F. Tenca, E. Savas, and Ç. K. Koç, “Scalable
and unified hardware to compute Montgomery inverse in GF (p)
and GF (2),” Cryptographic Hardware and Embedded Systems
(CHES) 2002B. S. Kaliski, Jr., Ç. K. Koç, and C. Paar, Eds.,
4th International Workshop, Springer Verlag, LNCS, vol. 2523, pp.
484–499, 2002.

[60] A. Menezes and S. Vanstone, “Elliptic curve cryptosystems and
their implementation,” J. Cryptol., pp. 209–224, 1993.

[61] K. Itoh, M. Takenaka, N. Torii, S. Temma, and Y. Kurihara,
“Fast implementation of public-key cryptography on a DSP
TMS320C6201,” in Cryptographic Hardware and Embedded Sys-
tems (CHES99). Heidelberg, Germany: Springer-Verlag, 1999,
vol. 1717, Lecture Notes in Computer Science, pp. 61–72.

[62] E. W. Knudsen, “Elliptic scalar multiplication using point
halving,” in Asiacrypt’99. Heidelberg, Germany: Springer-
Verlag, 1999, vol. 1716, Lecture Notes in Computer Science, pp.
135–149.

[63] R. Gallant, R. Lambert, and S. Vanstone, “Improving the paral-
lelized Pollard lambda search on anomalous binary curves,” Math.
Comput., vol. 69, pp. 1699–1705, 2000.

[64] R. P. Gallant, R. J. Lambert, and S. A. Vanstone, “Faster point
multiplication on elliptic curves with efficient endomorphisms,” in
Crypto-2001. Heidelberg, Germany: Springer-Verlag, 2001, vol.
2139, Lecture Notes in Computer Science, pp. 190–200.

[65] N. Smart, “The discrete logarithm problem on elliptic curves of
trace one,” J. Cryptol., vol. 12, pp. 193–196, 1999.

[66] M. A. Hasan, “Efficient computation of multiplicative inverses for
cryptographic applications,” in Proc. 5th IEEE Symp. Computer
Arithmetic 2001, pp. 66–72.

[67] T. Itoh and S. Tsujii, “A fast algorithm for computing multiplica-
tive inverses in GF (2) using normal bases,” Inf. Comput., vol.
78, pp. 171–177, 1988.

[68] E. Mastrovito, “VLSI architectures for computation in Galois
Fields,” Ph.D. dissertation, Dept. Electr. Eng., Linköping Univer-
sity, Linköping, Sweden, 1991.

[69] C. Paar and P. S. Rodriguez, “Fast arithmetic architectures
for public-key algorithms over Galois fields GF ((2)),” in
Advances in Cryptography, EUROCRYPT ’97. Heidelberg,
Germany: Springer-Verlag, 1997, vol. 1233, Lecture Notes in
Computer Science, pp. 363–378.

[70] L. Song and K. Parhi, “Efficient finite fields serial/parallel multi-
plication,” in Proc. Int. Conf. Application Specific System Architec-
tures and Processors 1996, pp. 72–82.

[71] K. Koyama and Y. Tsuruoka, “Speeding up elliptic cryptosystems
by using a signed binary window method,” in Advances in Cryp-
tology, CRYPTO ’92. Heidelberg, Germany: Springer-Verlag,
1993, vol. 740, Lecture Notes in Computer Science, pp. 345–357.

[72] O. Kömmerling and M. G. KuhnDesign, “Principles for tamper-
resistant smartcard processors,” presented at the USENIX Work-
shop Smartcard Technology (Smartcard ’99), Chicago, IL.

[73] A. Satoh and K. Takano, “A scalable dual-field elliptic curve
cryptographic processor,” IEEE Trans. Comput., vol. 52, no. 4, pp.
449–460, Apr. 2003.

[74] A. Cilardo, A. Mazzeo, and N. Mazzocca, “A representation of
elements in F enabling unified field arithmetic for elliptic curve
cryptography,” IEE Electron. Lett., vol. 41, no. 14, Jul. 2005.

[75] J. Großschädl, “A bit-serial unified multiplier architecture for finite
fieldsGF (p) andGF (2),” in Cryptographic Hardware and Em-
bedded Systems. Heidelberg, Germany: Springer-Verlag, 2001,
vol. 2162, Lecture Notes in Computer Science, pp. 202–219.

[76] J. Großschädl and G. A. Kamendje, “Low-power design of a func-
tional unit for arithmetic in finite fields GF (p) and GF (2),”
in Information Security Applications. Heidelberg, Germany:
Springer Verlag, 2003, vol. 2908, Lecture Notes in Computer
Science, pp. 227–243.

Alessandro Cilardo received the five-year
degree in computer science engineering, magna
cum laude, from the University of Naples Fed-
erico II, Naples, Italy, in 2003. He is currently
working toward the Ph.D. degree at the same
university.

His current research interests include al-
gorithms and architectures for cryptographic
engineering, with particular emphasis on
public-key cryptosystems. His research activities
also include investigation of architectures for

digital time stamping services.
Mr. Cilardo received the 2003 Federcomin-AICA Award for the best

thesis in the field of Information and Communication Technology. He is
the creator of the IP-SIM project, one of the winners of the eGate Contest
2005, sponsored by Axalto, SUN Microsystems, and ST Microelectronics.

Luigi Coppolino received the degree in com-
puter engineering from the University of Naples
Federico II, Naples, Italy, in 2003 and the Uni-
versity Master Degree in “Real Time, Reliable
and Secure Computing for Industrial Applica-
tions” from the Seconda Università degli Studi
of Naples Federico II in 2004. He is currently
working toward the Ph.D. degree at the Univer-
sity of Naples Federico II.

His research interests include fault tolerant and
secure systems and embedded systems.

Nicola Mazzocca received the M.Sc. degree in
electronic engineering and the Ph.D. degree in
computer engineering from the University of
Naples Federico II, Naples, Italy.

He is currently a Professor of High-Perfor-
mance and Reliable Computing at the Computer
and System Engineering Department of the
University of Naples Federico II, Italy. He has
authored over 200 papers in international jour-
nals, books, and international conferences in the
field of computer architecture, reliable and secure

systems, distributed systems, and performance evaluation in high-perfor-
mance systems. His research activities include methodologies and tools for
design/analysis of distributed systems; techniques for modeling and analysis
of distributed heterogeneous systems and communication networks; secure
and real-time systems; distributed control applications; models and tools
for configuration and performance evaluation of distributed, heterogeneous
systems and communication networks; dedicated parallel architectures. In
the context of such activities, he took part in numerous research projects,
funded by the Italian Ministry of University and Research (MIUR), the
National Research Council (CNR), the Agenzia Spaziale Italiana (ASI),
and the European Union. He cooperated with a number of Italian and
foreign institutions, including the Universities of Turin, Florence, and
Parma, the CNR, the University of Illinois at Urbana-Champaign, Caltech,
the University of Sheffield, and the Jet Propulsion Lab (JPL).

CILARDO et al.: ELLIPTIC CURVE CRYPTOGRAPHY ENGINEERING 405

Luigi Romano received the M.Sc. Degree in
electronic engineering and the Ph.D. degree in
computer engineering from the University of
Naples Federico II, Naples, Italy, in 1994 and
1999, respectively. He is currently an Associate
Professor at the Department for Technologies
of the University of Naples Parthenope. In
1996–1997, he was appointed as a Visiting
Scholar at the Centre for Reliable and High-Per-
formance Computing (CRHC), of the University
of Illinois, Urbana-Champaign. In 1997–1998,

he was again appointed to CRHC, as a Visiting Researcher. He spent in
total about 18 months at CRHC, doing research with Prof. R. K. Iyer. His
research interests are dependability and security of computer systems and
networks, embedded systems, and middleware and Web technologies.

Dr. Romano is a member of the International Program Committees for
several international conferences in the field of dependable and secure com-
puting, including the International Symposium on Dependable Systems and
Networks (DSN), the Symposium on Reliable Distributed Systems (SRDS),
and the International Symposium on High Assurance Systems Engineering
(HASE).

406 PROCEEDINGS OF THE IEEE, VOL. 94, NO. 2, FEBRUARY 2006

