
Two-Pole Compensation 
Part 2: Generalized Two-Pole Compensator 

by Dennis L Feucht 
 
 
The previous development in Part 1 http://www.analogZONE.com/col_0628.htm assumed real and equal 
poles for the two-pole compensator. What happens if the circuit is modified to allow for complex poles? The 
benefit in doing this, if it can be done, is that for amplifiers with other poles and zeros in the loop gain, 
complex pole-pair compensation can be achieved by the compensator while maintaining high loop gain over 
bandwidth. 
 
 
Two-Pole Compensator Circuit Design 
 
The two-pole compensator circuit of part 1 is reproduced below. 

The design equations of Part 1 constrained the damping ratio, ζ, of the pole-pair to unity. (ζ = cos(φ), where 
φ is the quadratic pole angle.) A useful design parameter, the pole-zero separation, will be given its own 
symbol as defined: 
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Noting that the location of the zero, z = 1/τz, and that the quadratic pole is of the form: 
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then z can be expressed in terms of design parameters as follows: 
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Where, a is taken from the voltage gain of the compensator circuit (see part 1.) Solving for R: 
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Now ζ is brought in as, 
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The compensator element C2 value results from solving this equation, and is: 
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C2 is expressed entirely in given parameters and is thereby determined. Next, the equation for z: 
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is solved for C1: 
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and substituted into the previous equation for R. This results in an expression for R in given parameters and 
C2, which is known from the equation above: 
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Finally, R is now substituted into the equation for C1 to yield: 
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Two-Pole Compensator Design Example 
 
An amplifier has a gain of K = 10 k, Ri = 10 kΩ, is to be two-pole compensated to have a zero at 500 kHz, 
and begin its rolloff a decade lower, at 50 kHz. Furthermore, an MFED pole response (30° pole angle) is 
desired, where ζ ≅  0.866. Component tolerances are 5%. 
 
The required parameters are: 
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First we calculate C2; it is 519 pF. The closest 5% part is pF 5202 =C  
 
Next, calculate R using the calculated value for C2 (instead of the 5% value) to keep the calculations 
accurate. (This is important when we get to C1 because the difference of two large numbers is taken.) Then  
R = 613 Ω. The closest value is Ω=  620R  
 
Finally, C1 is calculated from its equation, or from: 
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and if care is taken to retain numerical consistency it is 0.32 pF. This is a very small discrete capacitor value 
and suggests that it might be difficult to realize this reliably as a discrete circuit in manufacturing because 
this value is on the order of parasitics. The circuit-board layout between the output node and R must 
minimize stray capacitance. One way to implement C1 is with a small trimmer capacitor of about 1 pF 
maximum value. If such a small C1 is not feasible, then the given parameters must be adjusted to result in a 



larger capacitance. C1 increases if R increases due to a decrease in C2. And C2 decreases when ζ, γ, or τz 
decrease or Ri increases. The amplifier design is shown below. 

 
To check these results, we turn from synthesis to analysis and calculate a and b of the pole factor: 

kHz 50kHz 8.48s1006.1)1( 211
21 ≅=→×=+= −

ni fKCCRRa  
0.870.85  µs  5.51 µs 19.5ns 318)( 221 ≅=⇒=+=++= ζCRCCRb i  

Both fn and ζ are within the 5% tolerance of the components. Finally, we check our results against the 
constraints: 
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The lower limit of C2 is approached because C1 and C2 are so widely separated. 
 
The final check of this example is made from the SPICE frequency-response simulation. The Bode plots are 
shown below. 



 
Can the Compensator Circuit be Statically Stabilized? 
 
The above amplifier has no static (dc) feedback and behaves like an integrator at 0 Hz (dc). Unless it is 
within a larger feedback loop, the output drifts out of its linear range due to offset errors. For stand-alone 
applications, Rf must be included for static stabilization, as shown below. (The resulting compensator has the 
topology of a bridge-T filter.) 

 
The transfer function, with Rf included, is approximately the same as before (in Part 1) under the conditions 
that: 
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Under these conditions, the static-path feedback through Rf is small compared to the capacitive path (yet 
enough to statically stabilize the amplifier), and Rf negligibly shunts Ri and does not affect the transfer 
function of the capacitive path. Two-pole compensation can be achieved with limited, but often adequate, 
static feedback and all the theory developed thus far can be applied. 
 
Two-Pole Op-Amp Circuit? 
 
What happens if an op-amp is used? The voltage gain for K → ∞ is: 
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As Rf → ∞, the closed-loop voltage gain approaches the same expression as in Part 1, as it must. The above 
gain differs in that b = τz and does not have the extra degree of freedom that the previous circuit does with its 
RiC2 term. Consequently, ζ and γ are not independent but are related by: 
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Proceeding as in the prior derivation: 
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C2 is chosen to satisfy the constraint that R > 0. This choice depends upon Rf and interacts with it. The pole 
locus of voltage gain of the previous circuit was varied by (K + 1) since it was in a but not b. For this 
compensator, variation with constant b is due to Rf instead. To achieve γ > 1, as required for a two-pole 
compensator, the poles must be complex and have a pole angle greater than 60°, as shown below. 

At a pole-zero separation of zero, a 60° pole angle results, which establishes the minimum frequency 
peaking, Mm as 1.15 (or 1.25 dB) and minimum pulse overshoot fraction, Mp as 16 %. For a somewhat useful 
compensator with one octave of pole-zero separation, γ = 2, and ζ = 0.25 (φ = 76°), Mm = 2.97 (or 6.3 dB), 
and Mp = 44 %. 
 
We saw in Part 1 that operational amplifier forward paths drove the circuit poles to the origin, defeating the 
two-pole scheme. With non-large Rf, the poles again become finite but, because of the unavoidable 
underdamped response that accompanies adequate pole-zero separation, the bridge-T two-pole op amp 
compensator is very limited for two-pole compensation. It functions better as a notch filter, which is a typical 
application for bridge-T networks. 
 
 



Conclusion 
 
The design equations and a design example of the two-pole compensator circuit have been presented. With 
the math worked out, use of this design procedure is not difficult and can result in better feedback amplifier 
accuracy and linearity at higher frequencies than dominant-single-pole compensation. Remember, two-pole 
compensation is not used to increase amplifier stability but to increase upper-frequency loop gain. Two-pole 
compensation tends to decrease stability and must be applied carefully, making sure that no uncompensated 
poles exist in the loop below the two-pole break frequency. 
 
Secondly, this compensation technique, when implemented using the given circuit, is best placed within a 
larger feedback loop or else static errors will cause it to drift out of range. This problem can usually be 
corrected by simply placing a large-value feedback resistor around the finite-gain amplifier. However, if an 
op amp is used, the pole-zero placement for two-pole compensation is constrained excessively, rendering the 
attempt a failure. Not every "good idea" results in something useful. 
 
Much of the content of this article was derived from Analog Circuit Design, volume 2: Dynamic Circuit 
Response, available at http://www.innovatia.com 
 
 

 


