微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 嵌入式设计讨论 > MCU和单片机设计讨论 > 直接操作寄存器VS使用st的官方的库文件

直接操作寄存器VS使用st的官方的库文件

时间:10-02 整理:3721RD 点击:

这里介绍两种方式使用stm32的定时器:直接操作寄存器和使用st的官方的库文件。
相比较而言,直接操作定时器比较简洁,对着寄存器看十分明了。而使用库文件有一点晕头转向。
(个人观点)
程序如下:(以下程序在DX32的例程修改而来,使用的是比较古老的3.0固件库)
1、timer.c文件
#include "STM32Lib\\stm32f10x.h"
void TIM2_Configuration(void)
{
TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
TIM_OCInitTypeDef  TIM_OCInitStructure;
u16 CCR1_Val = 4000;
u16 CCR2_Val = 2000;
u16 CCR3_Val = 1000;
u16 CCR4_Val = 500;
/* TIM2 clock enable */
   RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2, ENABLE);

/* 基础设置*/
TIM_TimeBaseStructure.TIM_Period = 10000;   //计满值
TIM_TimeBaseStructure.TIM_Prescaler = 7200-1;     //预分频,此值+1为分频的除数
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;   //
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数

TIM_TimeBaseInit(TIM2, &TIM_TimeBaseStructure);

/* 比较通道1*/
TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_Inactive;        //输出比较非主动模式
TIM_OCInitStructure.TIM_Pulse = CCR1_Val;  
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;  //极性为正
   
TIM_OC1Init(TIM2, &TIM_OCInitStructure);
TIM_OC1PreloadConfig(TIM2, TIM_OCPreload_Disable);    //禁止OC1重装载,其实可以省掉这句,因为默认是4路都不重装的.

/*比较通道2 */        
TIM_OCInitStructure.TIM_Pulse = CCR2_Val;  

TIM_OC2Init(TIM2, &TIM_OCInitStructure);
TIM_OC2PreloadConfig(TIM2, TIM_OCPreload_Disable);

/* 比较通道3 */         
TIM_OCInitStructure.TIM_Pulse = CCR3_Val;  

TIM_OC3Init(TIM2, &TIM_OCInitStructure);
TIM_OC3PreloadConfig(TIM2, TIM_OCPreload_Disable);

/* 比较通道4 */      
TIM_OCInitStructure.TIM_Pulse = CCR4_Val;  

TIM_OC4Init(TIM2, &TIM_OCInitStructure);
TIM_OC4PreloadConfig(TIM2, TIM_OCPreload_Disable);

/*使能预装载*/
TIM_ARRPreloadConfig(TIM2, ENABLE);
/*预先清除所有中断位*/
TIM_ClearITPendingBit(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4|TIM_IT_Update);
/* 4个通道和溢出都配置中断*/
TIM_ITConfig(TIM2, TIM_IT_CC1 | TIM_IT_CC2 | TIM_IT_CC3 | TIM_IT_CC4|TIM_IT_Update, ENABLE);


/* 允许TIM2开始计数 */
TIM_Cmd(TIM2, ENABLE);
}
void TIM3_Configuration(u16 p,u16 psc)
{
RCC->APB1ENR|=1<<1;//TIM3时钟使能
//自动装载寄存器
TIM3->ARR=p; //设定定时器自动重装值
//PSC预分频寄存器
TIM3->PSC=psc; //设定定时器的分频系数
TIM3->DIER|=1<<0; //允许更新中断
TIM3->DIER|=1<<6; //允许触发中断
TIM3->CR1|=0X01; //使能定时器3(这里面包括计数方向为向上计数)
}
#if 0
void TIM4_Configuration(void)
{
    TIM_TimeBaseInitTypeDef  TIM_TimeBaseStructure;
TIM_OCInitTypeDef  TIM_OCInitStructure;
/* TIM4 clock enable */
   RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM4, ENABLE);

/* 基础设置*/
TIM_TimeBaseStructure.TIM_Period = 10000;   //计满值
TIM_TimeBaseStructure.TIM_Prescaler = 7200-1;     //预分频,此值+1为分频的除数
TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;   //
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;  //向上计数
TIM_TimeBaseInit(TIM4, &TIM_TimeBaseStructure);


/*使能预装载*/
TIM_ARRPreloadConfig(TIM4, ENABLE);
/*预先清除所有中断位*/
TIM_ClearITPendingBit(TIM4, TIM_IT_Update);

TIM_ITConfig(TIM4, TIM_IT_Update, ENABLE);


/* 允许TIM2开始计数 */
TIM_Cmd(TIM4, ENABLE);
}
#else
void TIM_Configuration(u16 p,u16 psc)
{
RCC->APB1ENR|=1<<2;//TIM4时钟使能
//自动装载寄存器
TIM4->ARR=p; //设定定时器自动重装值
//PSC预分频寄存器
TIM4->PSC=psc; //设定定时器的分频系数
TIM4->DIER|=1<<0; //允许更新中断
TIM4->DIER|=1<<6; //允许触发中断
TIM4->CR1|=0X01; //使能定时器3(这里面包括计数方向为向上计数)
}
#endif
上程序中,定时器2被配置成多路捕获模式,定时器3是直接操作寄存器进行配置的。
定时器4用了两种配置方式,使用固件库和直接操作寄存器。可以切换。效果一样。
需要注意的是,stm32103RBT6的通用定时器只有2、3、4.(没有5)
2、stm32f10x_it.c文件
/*******************************************************************************
* Function Name  : TIM2_IRQHandler TIM2中断
* Description    : This function handles TIM2 global interrupt request.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
unsigned int cnt=0;
unsigned int flag=0;
void TIM2_IRQHandler(void)
{
if (TIM_GetITStatus(TIM2, TIM_IT_CC1) != RESET)
{
  /*必须清空标志位*/
  TIM_ClearITPendingBit(TIM2, TIM_IT_CC1);

  //可添加功能块......

}
else if (TIM_GetITStatus(TIM2, TIM_IT_CC2) != RESET)
{
  TIM_ClearITPendingBit(TIM2, TIM_IT_CC2);

  //可添加功能块......
}
else if (TIM_GetITStatus(TIM2, TIM_IT_CC3) != RESET)
{
  TIM_ClearITPendingBit(TIM2, TIM_IT_CC3);
  
  //可添加功能块......
}
else if (TIM_GetITStatus(TIM2, TIM_IT_CC4) != RESET)
{
    TIM_ClearITPendingBit(TIM2, TIM_IT_CC4);
     
    //可添加功能块......
}
if (TIM_GetITStatus(TIM2, TIM_IT_Update) != RESET)
{
  TIM_ClearITPendingBit(TIM2, TIM_IT_Update);
  //flag=1;//计时满标志位置位
  //cnt++;//每TIM_Period计时满变量加一
}
}
/*******************************************************************************
* Function Name  : TIM3_IRQHandler
* Description    : This function handles TIM3 global interrupt request.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void TIM3_IRQHandler(void)
{
if(TIM3->SR&0X0001)
{
cnt++;
flag=1;
}
TIM3->SR&=~(1<<0);
}
/*******************************************************************************
* Function Name  : TIM4_IRQHandler
* Description    : This function handles TIM4 global interrupt request.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void TIM4_IRQHandler(void)
{
if(TIM_GetITStatus(TIM4, TIM_IT_Update) != RESET)
{
     TIM_ClearITPendingBit(TIM4, TIM_IT_Update);
        cnt++;
  flag=1;
}  
}
可以看到,定时器2有多个处理的事件,四个通道的计数溢出和定时器的总溢出。具体事件根据应用来配置。
另外,以上代码只是对三个通用定时器进行测试,具体应用根据情况来定。
3、NVIC.c文件
#include "STM32Lib\\stm32f10x.h"
//设置所有的中断允许
void NVIC_Configuration(void)
{
NVIC_InitTypeDef NVIC_InitStructure;

  /* Timer2中断*/
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_4);
NVIC_InitStructure.NVIC_IRQChannel = TIM2_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 4;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
#if 1
/* Configure one bit for preemption priority */
/* Timer3中断*/
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
  /* Timer4中断*/
NVIC_InitStructure.NVIC_IRQChannel = TIM4_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
#endif
/*UART1*/
NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
}

4、main.c文件
#include "STM32Lib\\stm32f10x.h"
#include "hal.h"
#include "stdio.h"
#include "string.h"
extern unsigned int cnt;
extern unsigned int flag;
int fputc(int ch, FILE *f)  
{  
//USART_SendData(USART1, (u8) ch);  

USART1->DR = (u8) ch;  

/* Loop until the end of transmission */  

while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)   
{   
}   
return ch;  
}
int main(void)
{
CanTxMsg msg;
msg.StdId=0x11;
msg.DLC=8;
msg.IDE=CAN_ID_STD;
msg.RTR=CAN_RTR_DATA;
memset(msg.Data,0x11,8);
ChipHalInit();   //片内硬件初始化
ChipOutHalInit();  //片外硬件初始化

for(;;)
{
can_send(&msg);
if(flag)
{
flag=0;

printf("cnt is %d\n",cnt);
}
}
}
本程序使用了串口、定时器,通过串口将当前计数值发给PC。
同时通过can总线对外发送数据
另外使用了printf,程序中有相应的配置。
5、can.c文件
#include "STM32Lib\\stm32f10x.h"
#include "hal.h"
#include <string.h>
//CAN总线的发送接收管脚的初始化
void CAN_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
//RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO,ENABLE);
//RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);



  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA, ENABLE);         
/* PA11-CAN RX */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(GPIOA, &GPIO_InitStructure);

/*PA12-CAN TX */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_12;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
// RCC_APB1PeriphClockCmd(RCC_APB1Periph_CAN1, ENABLE);
}
/*******************************************************************************
**CAN中断测试
*******************************************************************************/
void CAN_Interrupt(void)
{
CAN_InitTypeDef        CAN_InitStructure;
CAN_FilterInitTypeDef  CAN_FilterInitStructure;
// CanTxMsg TxMessage;

/* CAN register init */
CAN_DeInit(CAN1);
CAN_StructInit(&CAN_InitStructure);

/* CAN cell init */
/* CAN cell init */
CAN_InitStructure.CAN_TTCM=DISABLE;  //时间触发
CAN_InitStructure.CAN_ABOM=DISABLE;  //自动离线管理
CAN_InitStructure.CAN_AWUM=DISABLE;  //自动唤醒
CAN_InitStructure.CAN_NART=DISABLE;  //ENABLE:错误不自动重传 DISABLE:重传
CAN_InitStructure.CAN_RFLM=DISABLE;
CAN_InitStructure.CAN_TXFP=DISABLE;
CAN_InitStructure.CAN_Mode=CAN_Mode_Normal;  //CAN_Mode_LoopBack,CAN_Mode_Normal
CAN_InitStructure.CAN_SJW=CAN_SJW_1tq;   //1-4
CAN_InitStructure.CAN_BS1=CAN_BS1_5tq;   //1-16
CAN_InitStructure.CAN_BS2=CAN_BS2_3tq;   //1-8
CAN_InitStructure.CAN_Prescaler=4;    //波特率为 36/(4*(1+5+3))=1000k
CAN_Init(CAN1,&CAN_InitStructure);

/* CAN 过滤器设置 */
CAN_FilterInitStructure.CAN_FilterNumber=0;
CAN_FilterInitStructure.CAN_FilterMode=CAN_FilterMode_IdMask;
CAN_FilterInitStructure.CAN_FilterScale=CAN_FilterScale_32bit;
CAN_FilterInitStructure.CAN_FilterIdHigh=0x0000;
CAN_FilterInitStructure.CAN_FilterIdLow=0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdHigh=0x0000;
CAN_FilterInitStructure.CAN_FilterMaskIdLow=0x0000;
CAN_FilterInitStructure.CAN_FilterFIFOAssignment=CAN_FIFO0;
CAN_FilterInitStructure.CAN_FilterActivation=ENABLE;
CAN_FilterInit(&CAN_FilterInitStructure);

/* 允许FMP0中断*/
CAN_ITConfig(CAN1,CAN_IT_FMP0, ENABLE);
}/*
typedef struct
{
  uint32_t StdId;
  uint32_t ExtId;
  uint8_t IDE;
  uint8_t RTR;
  uint8_t DLC;
  uint8_t Data[8];
} CanTxMsg;
*/
//发送一个2字节的数据
void SendCan(u16 dat)
{
CanTxMsg TxMessage;

TxMessage.ExtId=0x01;
TxMessage.IDE=CAN_ID_EXT;
TxMessage.RTR=CAN_RTR_DATA;
TxMessage.DLC=2;
TxMessage.Data[0]=dat&0xff;
TxMessage.Data[1]=dat>>8;

CAN_Transmit(CAN1,&TxMessage);
}
#if 1
int can_send(CanTxMsg  *pTransmitBuf)
{
  u8 TransmitMailbox=0;
  CanTxMsg TxMessage;
  if(pTransmitBuf -> DLC > 8)
  {
       return  1;
  }
  /* transmit */
  TxMessage.StdId=pTransmitBuf ->StdId;//用来设定标准标识符(0-0x7ff,11位)
  //TxMessage.ExtId=pTransmitBuf ->ExtId;
  TxMessage.RTR=  pTransmitBuf ->RTR;//设置RTR位为数据帧
  TxMessage.IDE=  pTransmitBuf ->IDE;//标识符扩展位,为标准帧
  TxMessage.DLC=  pTransmitBuf ->DLC;//设置数据长度
  //根据DLC字段的值,将有效数据拷贝到发送数据寄存器
  memcpy(TxMessage.Data, pTransmitBuf ->Data,pTransmitBuf ->DLC);
  TransmitMailbox = CAN_Transmit(CAN1,&TxMessage);
  TransmitMailbox=TransmitMailbox;//加上这句话就是防止编译器产生警告
  return 1;
}
#endif
在调用can_send(CanTxMsg  *pTransmitBuf)发送数据之前,要对can总线进行相应的配置。
6、hal.c文件
/***************************************************
**HAL.c
**主要用于芯片硬件的内部外围和外部外围的初始化,两大INIT函数
**在MAIN中调用,使MAIN函数中尽量与硬件库无关
***************************************************/
//STM32F103RBT6有三个通用定时器,定时器2、3、4;操作基本一致
#include "STM32Lib\\stm32f10x.h"
//各个内部硬件模块的配置函数
extern void GPIO_Configuration(void);   //GPIO
extern void RCC_Configuration(void);   //RCC
extern void USART_Configuration(void);   //串口
extern void NVIC_Configuration(void);   //NVIC
extern void TIM2_Configuration(void);
extern void TIM3_Configuration(u16 p,u16 psc);
extern void TIM4_Configuration(void);
extern void TIM_Configuration(u16 p,u16 psc);
extern void CAN_Configuration(void);
extern void CAN_Interrupt(void);
/*******************************
**函数名:ChipHalInit()
**功能:片内硬件初始化
*******************************/
void  ChipHalInit(void)
{
//初始化时钟源
RCC_Configuration();

//初始化GPIO
GPIO_Configuration();

//初始化中断源
NVIC_Configuration();
//初始化串口
USART_Configuration();

//初始化定时器
//TIM2_Configuration();
//
//TIM3_Configuration(10000,7199);
//TIM4_Configuration();
TIM_Configuration(10000,7199);
//初始化CAN总线
CAN_Configuration();
//初始化CAN总线接收中断
CAN_Interrupt();
}
/*********************************
**函数名:ChipOutHalInit()
**功能:片外硬件初始化
*********************************/
void  ChipOutHalInit(void)
{

}

谢谢小编

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top