应用实例1
实例:ADC_RegularConversion_DMA
1 首先安装Keil.STM32F4xx_DFP.2.9.0.pack,该文件支持STM32F412ZG
2 打开:Project(工程)—optionsfor target
2.1 Device界面的下拉列表选择STM32F412ZGTx
2.2 target 界面 晶振 8Mhz
2.3 选择调试器:st-link debugger
2.4 点击settings 按钮
2.5 打开utilities界面
2.6 点击settings 按钮,进入debug 界面
2.7 进入flash download界面
3 编译时候 少文件
#include "stm32f4xx_hal.h" 需要官网下载 hal库。
4 程序分析:
4.1主函数
int main(void)
{
ADC_ChannelConfTypeDef sConfig;
HAL_Init();/* 初始化HAL库函数 */
/* 配置 LED1 andLED2输出 */
BSP_LED_Init(LED1);
BSP_LED_Init(LED2);
/* 配置系统时钟 100MHz,STM32F412ZG可不支持超频啊 */
SystemClock_Config();
/*adc硬件配置*/
AdcHandle.Instance =ADCx;
AdcHandle.Init.ClockPrescaler = ADC_CLOCKPRESCALER_PCLK_div4; //分频器
AdcHandle.Init.Resolution = ADC_RESOLUTION_12B; //12bit 分辨率
AdcHandle.Init.ScanConvMode = DISABLE; /*扫描模式关闭 */
AdcHandle.Init.ContinuousConvMode = ENABLE;
/*连续采集模式关闭,只有在触发沿转化一次 */
AdcHandle.Init.DiscontinuousConvMode = DISABLE;
/*参数被丢弃,因为序列发生器是禁用的*/
AdcHandle.Init.NbrOfDiscConversion = 0;
AdcHandle.Init.ExternalTrigConvEdge = ADC_EXTERNALTRIGCONVEDGE_NONE;
/*当外部事件触发,adc开始转化 */
AdcHandle.Init.ExternalTrigConv = ADC_EXTERNALTRIGCONV_T1_CC1;
AdcHandle.Init.DataAlign = ADC_DATAALIGN_RIGHT;
AdcHandle.Init.NbrOfConversion = 1;
AdcHandle.Init.DMAContinuousRequests = ENABLE;
AdcHandle.Init.EOCSelection = DISABLE;
if(HAL_ADC_Init(&AdcHandle) != HAL_OK)
{
/* ADC初始化错误处理 */
Error_Handler();
}
/*配置adc通道*/
sConfig.Channel =ADC_CHANNEL_10;
sConfig.Rank = 1;
sConfig.SamplingTime = ADC_SAMPLETIME_3CYCLES;
sConfig.Offset = 0;
if(HAL_ADC_ConfigChannel(&AdcHandle, &sConfig) != HAL_OK)
{
/*通道配置错误 */
Error_Handler();
}
/*开始adc转化*/
if(HAL_ADC_Start_DMA(&AdcHandle,(uint32_t*)&uhADCxConvertedValue, 1) != HAL_OK)
{
/* 开始转化出错 */
Error_Handler();
}
/*主循环*/
while (1)
{
}
}
4.2 配置时钟
/* 配置系统时钟 100 MHz,STM32F412ZG可不支持超频啊 */
//SYSCLK(Hz) = 100000000
//HCLK(Hz) = 100000000
static void SystemClock_Config(void)
{
RCC_ClkInitTypeDef RCC_ClkInitStruct;
RCC_OscInitTypeDef RCC_OscInitStruct;
HAL_StatusTypeDef ret = HAL_OK;
/* 使能电源控制时钟*/
__HAL_RCC_PWR_CLK_ENABLE();
/*The voltage scaling allows optimizing the power consumption when the device is
clocked below the maximum system frequency, to update the voltagescaling value
regarding system frequency refer to product datasheet. */
__HAL_PWR_VOLTAGESCALING_CONFIG(PWR_REGULATOR_VOLTAGE_SCALE1);
/*Enable HSE Oscillator and activate PLL with HSE as source */
RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE;
RCC_OscInitStruct.HSEState = RCC_HSE_BYPASS;
RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON;
RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE;
RCC_OscInitStruct.PLL.PLLM = 8;
RCC_OscInitStruct.PLL.PLLN = 200;
RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_div2;
RCC_OscInitStruct.PLL.PLLQ = 7;
RCC_OscInitStruct.PLL.PLLR = 2;
ret= HAL_RCC_OscConfig(&RCC_OscInitStruct);
if(ret != HAL_OK)
{
while(1) { ; }
}
/*Select PLL as system clock source and configure the HCLK, PCLK1 and PCLK2
clocks dividers */
RCC_ClkInitStruct.ClockType = (RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_HCLK| RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2);
RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK;
RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_div1;
RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_div2;
RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_div1;
ret= HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_3);
if(ret != HAL_OK)
{
while(1) { ; }
}
}







