微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 嵌入式设计讨论 > MCU和单片机设计讨论 > STM32f103,双AD分别采集两路输入信号,为何输出结果,ADC1精度较高,而ADC2结果前面几个数据不准确?

STM32f103,双AD分别采集两路输入信号,为何输出结果,ADC1精度较高,而ADC2结果前面几个数据不准确?

时间:10-02 整理:3721RD 点击:
代码如下:
#include "adc_db_sm.h"
#include "sys.h"
#include "stm32f10x_adc.h"
#include "stm32f10x_dma.h"
#include "delay.h"

__IO uint32_t ADC_DualConvertedValueTab[ADC_BufferLength];
void ADC1_2_Init(void)
{
ADC_InitTypeDef ADC_InitStructure;
DMA_InitTypeDef DMA_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
RCC_ADCCLKConfig(RCC_PCLK2_Div4);
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_ADC1 | RCC_APB2Periph_ADC2 | RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_4;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN;
GPIO_Init(GPIOA, &GPIO_InitStructure);
DMA_DeInit(DMA1_Channel1);                                                   //DMA通道1恢复到默认状态
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)ADC1_DR_Address;        //设置数据来源地址
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)ADC_DualConvertedValueTab;  //设置copy目标地址
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;                           //设置copy方向
DMA_InitStructure.DMA_BufferSize = 16;                                       //设置数组大小
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;             //数据来源不变
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;                      //数据保存的数组地址自增
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Word;      //DMA操作字长 32位
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Word;              //DMA操作字长 32位
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;                                //普通的DMA操作模式:当DMA操作转移够 数组大小                                                                                 //所限定的数据总量后,则不再进行DMA操作
DMA_InitStructure.DMA_Priority = DMA_Priority_High;                          //DMA优先级
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;                                 //关闭mTM
DMA_Init(DMA1_Channel1, &DMA_InitStructure);                                 //使能dma
/* Enable DMA1 Channel1 */
DMA_Cmd(DMA1_Channel1, ENABLE);
/* ADC1 configuration ------------------------------------------------------*/
ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;                              //ADC1同步规则组模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE;                                  //启动扫描
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;                            //连续转换
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;           //无外部触发
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;                        //结果右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1;                                       //转换通道数2
ADC_Init(ADC1, &ADC_InitStructure);                                           //配置ADC1
/* ADC1 regular channels configuration */
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 1, ADC_SampleTime_239Cycles5); //通道配置   
/* Enable ADC1 DMA */
ADC_DMACmd(ADC1, ENABLE);
/* ADC2 configuration ------------------------------------------------------*/
ADC_InitStructure.ADC_Mode = ADC_Mode_RegSimult;                              //ADC2同步规则组模式
ADC_InitStructure.ADC_ScanConvMode = DISABLE;                                  //启动扫描
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE;                            //连续转换
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None;           //无外部触发
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right;                        //结果右对齐
ADC_InitStructure.ADC_NbrOfChannel = 1;                                       //转换通道数
ADC_Init(ADC2, &ADC_InitStructure);                                           //配置ADC2
/* ADC2 regular channels configuration */
ADC_RegularChannelConfig(ADC2, ADC_Channel_4, 1, ADC_SampleTime_239Cycles5);    //通道配置
/* Enable ADC2 external trigger conversion */
ADC_ExternalTrigConvCmd(ADC2, ENABLE);                                        //使能ADC2的外部触发模式

/* Enable ADC1 */
ADC_Cmd(ADC1, ENABLE);                                                        //使能ADC1
/* Enable Vrefint channel17 */
// ADC_TempSensorVrefintCmd(ENABLE);                                             // 使能温度传感器内部参考电压通道
/* Enable ADC1 reset calibration register */   
ADC_ResetCalibration(ADC1);                                                   //ADC1的校准
/* Check the end of ADC1 reset calibration register */
while(ADC_GetResetCalibrationStatus(ADC1));
/* Start ADC1 calibration */
ADC_StartCalibration(ADC1);
/* Check the end of ADC1 calibration */
while(ADC_GetCalibrationStatus(ADC1));

/* Enable ADC2 */
ADC_Cmd(ADC2, ENABLE);                                                      //使能ADC2
/* Enable ADC2 reset calibration register */   
ADC_ResetCalibration(ADC2);                                                 //ADC2的校准
/* Check the end of ADC2 reset calibration register */
while(ADC_GetResetCalibrationStatus(ADC2));
/* Start ADC2 calibration */
ADC_StartCalibration(ADC2);
/* Check the end of ADC2 calibration */
while(ADC_GetCalibrationStatus(ADC2));
//delay_ms(50);
//ADC_SoftwareStartConvCmd(ADC2, ENABLE);
/* Start ADC1 Software Conversion */                                        //软件启动ADC1,开始转换
ADC_SoftwareStartConvCmd(ADC1, ENABLE);
/* Test on DMA1 channel1 transfer complete flag */                          //等待一组DMA存储转换完成
while(!DMA_GetFlagStatus(DMA1_FLAG_TC1));
/* Clear DMA1 channel1 transfer complete flag */
DMA_ClearFlag(DMA1_FLAG_TC1);
//DMA_Done = 1;
}
void getAD(uint16_t *adc1_val,uint16_t *adc2_val)
{
        int i;
        for(i=0;i<8;i++)
      {
       adc1_val[i] = ADC_DualConvertedValueTab[i];
       adc2_val[i] = ADC_DualConvertedValueTab[i]>>16;
       }
          
}
串口输出的结果为:
ADC1 result is
4095 4095 4095 4095 4095 4095 4095 4095
ADC2 result is
2416 4095 4095 4095 4095 4095 4095 4095
标准结果为所有数据均为4095;
将采样频率变小,ADC2结果更加差!

系统默然的时钟为72M,按照RCC_ADCCLKConfig(RCC_PCLK2_Div4);四分频之后时钟频率为16M,而时钟频率最大仅可为14M,所以导致采样出现问题。我将RCC_PCLK2_Div4换成RCC_PCLK2_Div6 AD采样结果明显好转。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top