CC2530 zstack串口透传解析
一、串口终端1的数据,如何被节点1所接收,并且发送出去的?
串口数据是由HAL层来负责的,让我们从主循环 (osal_start_system) 的Hal_ProcessPoll函数找下去 ,Hal_ProcessPoll ==> HalUARTPoll ==> HalUARTPollDMA。在这个 HalUARTPollDMA 函数里最后有这样一句话:dmaCfg.uartCB(HAL_UART_DMA-1, evt); 对dmaCfg.uartCB 这个函数进行了调用,dmaCfg结构体类型如下:
typedef struct
{
uint16 rxBuf[HAL_UART_DMA_RX_MAX];
rxIdx_t rxHead;
rxIdx_t rxTail;
uint8 rxTick;
uint8 rxShdw;
uint8 txBuf[2][HAL_UART_DMA_TX_MAX];
txIdx_t txIdx[2];
volatile uint8 txSel;
uint8 txMT;
uint8 txTick; // 1-character time in 32kHz ticks according to baud rate,
// to be used in calculating time lapse since DMA ISR
// to allow delay margin before start firing DMA, so that
// DMA does not overwrite UART DBUF of previous packet
volatile uint8 txShdw; // Sleep Timer LSB shadow.
volatile uint8 txShdwValid; // TX shadow value is valid
uint8 txDMAPending; // UART TX DMA is pending
halUARTCBack_t uartCB;
} uartDMACfg_t;
由上可知,uartCB是一个类型为halUARTCBack_t的函数指针(回调函数),那这个函数指针在那里赋值的呢?请看下面这条线路。void SerialApp_Init( uint8 task_id )里面有如下语句halUARTCfg_t uartConfig;在接下来的给uartConfig这个结构体变量赋值的语句中有如下语句:uartConfig.callBackFunc = SerialApp_CallBack;即将uartConfig里的串口回调函数设置为SerialApp_CallBack,然后再通过HalUARTOpen (SERIAL_APP_PORT, &uartConfig);这个函数的调用(不再深入进去,有兴趣的同学可以进一步跟进)将uartConfig这个结构体变量的值转化为uartConfig这个结构体变量的值,注意两个结构体变量所属的类型不同,不能直接赋值,需要转化。
这样就保证了,SerialApp_CallBack函数每次循环中被调用一次,SerialApp_CallBack( ) ==> SerialApp_Send( ),在SerialApp_Send()函数里会调用HalUARTRead()函数,将 DMA 数据读至数据 buffer 并通过 AF_DataRequest ()函数发送出去,注意:发送出去的信息的 CLUSTERID(信息簇ID)号为 SERIALAPP_CLUSTERID1。
二、节点2 在收到空中的信号后,如何传递给与其相连的串口终端?
节点 2 从空中捕获到信号后, 会应用层任务处理函数上进入AF_INCOMING_MSG_CMD分支,进入 SerialApp_ProcessMSGCmd()函数里进入处理。
void SerialApp_ProcessMSGCmd( afIncomingMSGPacket_t *pkt ) //对从空中捕获到的信号进行处理
{
uint8 stat;
uint8 seqnb;
uint8 delay;
switch ( pkt->clusterId )
{
// A message with a serial data block to be transmitted on the serial port.
case SERIALAPP_CLUSTERID1: //节点一发送过来的信息的 CLUSTERID(信息簇ID)号为 SERIALAPP_CLUSTERID1
// Store the address for sending and retrying.
osal_memcpy(&SerialApp_RxAddr, &(pkt->srcAddr), sizeof( afAddrType_t ));
seqnb = pkt->cmd.Data[0];
// Keep message if not a repeat packet
if ( (seqnb > SerialApp_RxSeq) || // Normal
((seqnb <</span> 0x80 ) && ( SerialApp_RxSeq > 0x80)) ) // Wrap-around
{
// Transmit the data on the serial port.
if ( HalUARTWrite( SERIAL_APP_PORT, pkt->cmd.Data+1, (pkt->cmd.DataLength-1) ) ) //通过串口发送数据到PC机
{
// Save for next incoming message
SerialApp_RxSeq = seqnb;
stat = OTA_SUCCESS;
}
else
{
stat = OTA_SER_BUSY;
}
}
else
{
stat = OTA_DUP_MSG;
}
// Select approproiate OTA flow-control delay.
delay = (stat == OTA_SER_BUSY) ? SERIALAPP_NAK_DELAY : SERIALAPP_ACK_DELAY;
// Build & send OTA response message.
SerialApp_RspBuf[0] = stat;
SerialApp_RspBuf[1] = seqnb;
SerialApp_RspBuf[2] = LO_UINT16( delay );
SerialApp_RspBuf[3] = HI_UINT16( delay );
osal_set_event( SerialApp_TaskID, SERIALAPP_RESP_EVT ); //受到数据后,向节点1发送一个响应事件,跳到SerialApp_ProcessEvent()
osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_RESP_EVT);
break;
......
}
}
UINT16 SerialApp_ProcessEvent( uint8 task_id, UINT16 events )
{
......
if ( events & SERIALAPP_RESP_EVT ) //串口响应事件,表示成功接受来自节点1的数据,
{
SerialApp_Resp(); //向节点1发送 成功接受的response
return ( events ^ SERIALAPP_RESP_EVT );
}
......
}
static void SerialApp_Resp(void)
{
if (afStatus_SUCCESS != AF_DataRequest(&SerialApp_RxAddr, //通过AF_DataRequest函数,讲接收成功响应从空中发送出去
(endPointDesc_t *)&SerialApp_epDesc,
SERIALAPP_CLUSTERID2,
SERIAL_APP_RSP_CNT, SerialApp_RspBuf,
&SerialApp_MsgID, 0, AF_DEFAULT_RADIUS))
{
osal_set_event(SerialApp_TaskID, SERIALAPP_RESP_EVT); //如果发送失败,重新发送
}
}
节点1,接收到来自节点2的response。
UINT16 SerialApp_ProcessEvent( uint8 task_id, UINT16 events )
{
......
while ( (MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( SerialApp_TaskID )) )
{
switch ( MSGpkt->hdr.event )
{
......
case AF_INCOMING_MSG_CMD: //在这个实验中,使用串口通讯时,触发的事件,从空中捕获到信号。
SerialApp_ProcessMSGCmd( MSGpkt ); //处理这个消息
break;
......
}
}
}
SERIALAPP_CLUSTERID2代表接收到发送成功的response,取消自动重发,如果不,自动重发。
void SerialApp_ProcessMSGCmd( afIncomingMSGPacket_t *pkt )
{
......
// A response to a received serial data block.
case SERIALAPP_CLUSTERID2: //SerialWsn_CLUSTERID2代表接收到发送成功的response
if ((pkt->cmd.Data[1] == SerialApp_TxSeq) &&
((pkt->cmd.Data[0] == OTA_SUCCESS) || (pkt->cmd.Data[0] == OTA_DUP_MSG)))
{
SerialApp_TxLen = 0;
osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_SEND_EVT); //当收到发送成功的response,停止自动从发
}
else
{
// Re-start timeout according to delay sent from other device.
delay = BUILD_UINT16( pkt->cmd.Data[2], pkt->cmd.Data[3] );
osal_start_timerEx( SerialApp_TaskID, SERIALAPP_SEND_EVT, delay ); //没有收到成功的response,自动重发
}
break;
default:
break;
}
下面部分来自网络上另一篇文章
粗略的看了下这个程序,发现这个程序有一个EP(终端),每个终端有两个簇(SERIALAPP_CLUSTERID1、SERIALAPP_CLUSTERID2),可以在以下代码中定义
// This list should be filled with Application specific Cluster IDs.
const cId_t SerialApp_ClusterList[SERIALAPP_MAX_CLUSTERS] =
{
SERIALAPP_CLUSTERID1,
SERIALAPP_CLUSTERID2
};
其中SERIALAPP_CLUSTERID1是负责数据的传输的,而SERIALAPP_CLUSTERID2则负责传输的反馈。在以下函数中可以看出
void SerialApp_ProcessMSGCmd( afIncomingMSGPacket_t *pkt )
{
uint8 stat;
uint8 seqnb;
uint8 delay;
switch ( pkt->clusterId )
{
// A message with a serial data block to be transmitted on the serial port.
case SERIALAPP_CLUSTERID1: // 处理数据
// Store the address for sending and retrying.
osal_memcpy(&SerialApp_RxAddr, &(pkt->srcAddr), sizeof( afAddrType_t )); // 保存来信地址
seqnb = pkt->cmd.Data[0]; // 保存计数(来自发送端,来用检验)
// Keep message if not a repeat packet
if ( (seqnb > SerialApp_RxSeq) || // Normal, 是否是最新的数据
((seqnb <</span> 0x80 ) && ( SerialApp_RxSeq > 0x80)) ) // Wrap-around,
{
#ifndef GEC_EP
// Transmit the data on the serial port.
if ( HalUARTWrite( SERIAL_APP_PORT, pkt->cmd.Data+1, (pkt->cmd.DataLength-1) ) )
{
// Save for next incoming message
SerialApp_RxSeq = seqnb; // 保存计数
stat = OTA_SUCCESS;
}
else
{
stat = OTA_SER_BUSY;
}
#else // 添加部分代码,实现数据回传显示到串口,没办法串口只有一个
if (afStatus_SUCCESS != AF_DataRequest(&SerialApp_RxAddr,
(endPointDesc_t *)&SerialApp_epDesc,
SERIALAPP_CLUSTERID1,
SerialApp_TxLen+1, SerialApp_TxBuf,
&SerialApp_MsgID, 0, AF_DEFAULT_RADIUS))
{
osal_set_event(SerialApp_TaskID, SERIALAPP_SEND_EVT);
}
#endif
}
else
{
stat = OTA_DUP_MSG;
}
// Select approproiate OTA flow-control delay.
delay = (stat == OTA_SER_BUSY) ? SERIALAPP_NAK_DELAY : SERIALAPP_ACK_DELAY; // UART忙则延时16ms,否则延时1ms
// Build & send OTA response message.
SerialApp_RspBuf[0] = stat; // 接收状态
SerialApp_RspBuf[1] = seqnb; // 计数
SerialApp_RspBuf[2] = LO_UINT16( delay );
SerialApp_RspBuf[3] = HI_UINT16( delay );
osal_set_event( SerialApp_TaskID, SERIALAPP_RESP_EVT ); // 发送反馈信息
osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_RESP_EVT); // 停止反馈定时器
break;
// A response to a received serial data block.
case SERIALAPP_CLUSTERID2: // 处理反馈
if ((pkt->cmd.Data[1] == SerialApp_TxSeq) && // 反馈回来的是刚才发的
((pkt->cmd.Data[0] == OTA_SUCCESS) || (pkt->cmd.Data[0] == OTA_DUP_MSG))) // 成功或者过期
{
SerialApp_TxLen = 0; // 准备下一次发送
osal_stop_timerEx(SerialApp_TaskID, SERIALAPP_SEND_EVT); // 无需重发,关闭定时器
}
else // 需要重发
{
// Re-start timeout according to delay sent from other device.
delay = BUILD_UINT16( pkt->cmd.Data[2], pkt->cmd.Data[3] ); // 延时发送
osal_start_timerEx( SerialApp_TaskID, SERIALAPP_SEND_EVT, delay ); //
}
break;
default:
break;
}
}
总结一下以上的代码,当SERIALAPP_CLUSTERID1收到数据的时候,将会检验这个数据包是否是新的,由于逻辑有点复杂,下面用伪代码描述
if (新数据包)
{
if (UART发送成功)
{
反馈成功信息;
}
else 否则反馈UART忙;
}
else 反馈此包过期;
同样,对于SERIALAPP_CLUSTERID2的信息处理也可以这样描述
if (刚才发送的包 && (成功 || 过期))
{
关闭定时器,注备下一次的发送,也就是说没有收到确认信息,不会进行下一次的发送
}
else
{
给我延时重发去
}
谢谢分享!也可以参考serial app
哪里有:serial APP呢?
