z-stack驱动RC522读卡器
时间:10-02
整理:3721RD
点击:
我的是cc2530芯片,有没有人做过z-stack驱动MFRC522读卡器,我现在遇到了一个问题,就是裸机程序(没用z-stack)可以完美驱动MFRC522读卡器,但是把程序加入到z-stack中就无法寻卡,查了好多资料都不行,有没人可以帮帮忙,万分感谢。
与MFRC522的接口是哪种?SPI ,I2C,uart?
普通IO模拟的SPI接口
自己顶一下
相关代码如下:
主要在GenericApp.c添加了200行和395行,其他没改
IC_w_r.c.c
#include"rc522.h"
#include"UART.h"
#include"iocc2530.h"
//宏定义
#define IC_CS P1_7
#define IC_SCK P0_0
#define IC_MOSI P1_2
#define IC_MISO P0_4
#define IC_REST P0_5
#define uint unsigned int
#define uchar unsigned char
//void Delay_I_1us(unsigned int k)
//{
// uint i,j;
// for(i=0;i<k;i++)
// for(j=0;j<32;j++);
//}
//引脚初始化
void Initial(void)
{
/* IC_CS P1_7 */
P1DIR |= 1<<7;
P1INP |= 1<<7;
P1SEL &= ~(1<<7);
/* IC_SCK P0_0 */
P0DIR |= 1<<0;
P0INP |= 1<<0;
P0SEL &= ~(1<<0);
/* IC_MOSI P1_2 */
P1DIR |= 1<<2;
P1INP |= 1<<2;
P1SEL &= ~(1<<2);
/* IC_MISO P0_4 */
P0DIR &= ~(1<<4);
P0INP &= ~(1<<4);
P0SEL &= ~(1<<4);
/* IC_REST P0_5 */
P0DIR |= 1<<5;
P0INP |= 1<<5;
P0SEL &= ~(1<<5);
IC_SCK = 1;
IC_CS = 1;
}
//延迟函数
void Delay_I_1us(unsigned int k)
{
while(k--)
{
asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");
asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");asm("nop");
asm("nop");asm("nop");
}
}
void SPIWriteByte(uchar infor)
{
unsigned int counter;
for(counter=0;counter<8;counter++)
{
if(infor&0x80)
IC_MOSI = 1;
else
IC_MOSI = 0;
Delay_I_1us(3);
IC_SCK = 0;
Delay_I_1us(1);
IC_SCK = 1;
Delay_I_1us(3);
infor <<= 1;
}
}
unsigned char SPIReadByte()
{
unsigned int counter;
unsigned char SPI_Data;
for(counter=0;counter<8;counter++)
{
SPI_Data<<=1;
IC_SCK = 0;
Delay_I_1us(3);
if(IC_MISO == 1)
SPI_Data |= 0x01;
Delay_I_1us(2);
IC_SCK = 1;
Delay_I_1us(3);
}
return SPI_Data;
}
/////////////////////////////////////////////////////////////////////
//功 能:读RC632寄存器
//参数说明:Address[IN]:寄存器地址
//返 回:读出的值
/////////////////////////////////////////////////////////////////////
unsigned char ReadRawRC(unsigned char Address)
{
unsigned char ucAddr;
unsigned char ucResult=0;
IC_CS = 0;
ucAddr = ((Address<<1)&0x7E)|0x80;//地址变换,SPI的读写地址有要求
SPIWriteByte(ucAddr);
ucResult=SPIReadByte();
IC_CS = 1;
return ucResult;
}
/////////////////////////////////////////////////////////////////////
//功 能:写RC632寄存器
//参数说明:Address[IN]:寄存器地址
// value[IN]:写入的值
/////////////////////////////////////////////////////////////////////
void WriteRawRC(unsigned char Address, unsigned char value)
{
unsigned char ucAddr;
Address <<= 1;
ucAddr = (Address&0x7e);
IC_CS = 0;
SPIWriteByte(ucAddr);
SPIWriteByte(value);
IC_CS = 1;
}
/////////////////////////////////////////////////////////////////////
//功 能:置RC522寄存器位
//参数说明:reg[IN]:寄存器地址
// mask[IN]:置位值
/////////////////////////////////////////////////////////////////////
void SetBitMask(unsigned char reg,unsigned char mask)
{
char tmp = 0x0;
tmp = ReadRawRC(reg);
WriteRawRC(reg,tmp | mask); // set bit mask
}
/////////////////////////////////////////////////////////////////////
//功 能:清RC522寄存器位
//参数说明:reg[IN]:寄存器地址
// mask[IN]:清位值
/////////////////////////////////////////////////////////////////////
void ClearBitMask(unsigned char reg,unsigned char mask)
{
char tmp = 0x0;
tmp = ReadRawRC(reg);
WriteRawRC(reg, tmp & ~mask); // clear bit mask
}
/////////////////////////////////////////////////////////////////////
//开启天线
//每次启动或关闭天险发射之间应至少有1ms的间隔
/////////////////////////////////////////////////////////////////////
void PcdAntennaOn(void)
{
unsigned char i;
i = ReadRawRC(TxControlReg);
if (!(i & 0x03))
{
SetBitMask(TxControlReg, 0x03);
}
}
/////////////////////////////////////////////////////////////////////
//关闭天线
/////////////////////////////////////////////////////////////////////
void PcdAntennaOff(void)
{
ClearBitMask(TxControlReg, 0x03);
}
/////////////////////////////////////////////////////////////////////
//功 能:复位RC522
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
void PcdReset(void)
{
//PORTD|=(1<<RC522RST);
IC_REST = 1;
Delay_I_1us(1);
//PORTD&=~(1<<RC522RST);
IC_REST = 0;
Delay_I_1us(1);
//PORTD|=(1<<RC522RST);
IC_REST = 1;
Delay_I_1us(1);
WriteRawRC(0x01,0x0f);
while(ReadRawRC(0x01)&0x10);
Delay_I_1us(10);
WriteRawRC(ModeReg,0x3D); //定义发送和接收常用模式 和Mifare卡通讯,CRC初始值0x6363
WriteRawRC(TReloadRegL,30); //16位定时器低位
WriteRawRC(TReloadRegH,0); //16位定时器高位
WriteRawRC(TModeReg,0x8D); //定义内部定时器的设置
WriteRawRC(TPrescalerReg,0x3E); //设置定时器分频系数
WriteRawRC(TxAutoReg,0x40); // 调制发送信号为100%ASK
//return MI_OK;
}
//////////////////////////////////////////////////////////////////////
//设置RC632的工作方式
//////////////////////////////////////////////////////////////////////
void M500PcdConfigISOType(unsigned char type)
{
if (type == 'A') //ISO14443_A
{
ClearBitMask(Status2Reg,0x08);
WriteRawRC(ModeReg,0x3D);//3F
WriteRawRC(RxSelReg,0x86);//84
WriteRawRC(RFCfgReg,0x7F); //4F
WriteRawRC(TReloadRegL,30);//tmoLength);// TReloadVal = 'h6a =tmoLength(dec)
WriteRawRC(TReloadRegH,0);
WriteRawRC(TModeReg,0x8D);
WriteRawRC(TPrescalerReg,0x3E);
Delay_I_1us(2);
PcdAntennaOn();//开天线
}
// else return (-1);
//return MI_OK;
}
/////////////////////////////////////////////////////////////////////
//功 能:通过RC522和ISO14443卡通讯
//参数说明:Command[IN]:RC522命令字
// pInData[IN]:通过RC522发送到卡片的数据
// InLenByte[IN]:发送数据的字节长度
// pOutData[OUT]:接收到的卡片返回数据
// *pOutLenBit[OUT]:返回数据的位长度
/////////////////////////////////////////////////////////////////////
char PcdComMF522(unsigned char Command, //RC522命令字
unsigned char *pInData, //通过RC522发送到卡片的数据
unsigned char InLenByte, //发送数据的字节长度
unsigned char *pOutData, //接收到的卡片返回数据
unsigned int *pOutLenBit) //返回数据的位长度
{
char status = MI_ERR;
unsigned char irqEn = 0x00;
unsigned char waitFor = 0x00;
unsigned char lastBits;
unsigned char n;
unsigned int i;
switch (Command)
{
case PCD_AUTHENT: //Mifare认证
irqEn = 0x12; //允许错误中断请求ErrIEn 允许空闲中断IdleIEn
waitFor = 0x10; //认证寻卡等待时候 查询空闲中断标志位
break;
case PCD_TRANSCEIVE: //接收发送 发送接收
irqEn = 0x77; //允许TxIEn RxIEn IdleIEn LoAlertIEn ErrIEn TimerIEn
waitFor = 0x30; //寻卡等待时候 查询接收中断标志位与 空闲中断标志位
break;
default:
break;
}
WriteRawRC(ComIEnReg,irqEn|0x80); //IRqInv置位管脚IRQ与Status1Reg的IRq位的值相反
ClearBitMask(ComIrqReg,0x80); //Set1该位清零时,CommIRqReg的屏蔽位清零
WriteRawRC(CommandReg,PCD_IDLE); //写空闲命令
SetBitMask(FIFOLevelReg,0x80); //置位FlushBuffer清除内部FIFO的读和写指针以及ErrReg的BufferOvfl标志位被清除
for (i=0; i<InLenByte; i++)
{ WriteRawRC(FIFODataReg, pInData[i]); } //写数据进FIFOdata
WriteRawRC(CommandReg, Command); //写命令
if (Command == PCD_TRANSCEIVE)
{ SetBitMask(BitFramingReg,0x80); } //StartSend置位启动数据发送 该位与收发命令使用时才有效
i = 1000;//根据时钟频率调整,操作M1卡最大等待时间25ms
do //认证 与寻卡等待时间
{
n = ReadRawRC(ComIrqReg); //查询事件中断
i--;
}
while ((i!=0) && !(n&0x01) && !(n&waitFor)); //退出条件i=0,定时器中断,与写空闲命令
ClearBitMask(BitFramingReg,0x80); //清理允许StartSend位
if (i!=0)
{
if(!(ReadRawRC(ErrorReg)&0x1B)) //读错误标志寄存器BufferOfI CollErr ParityErr ProtocolErr
{
status = MI_OK;
if (n & irqEn & 0x01) //是否发生定时器中断
{ status = MI_NOTAGERR; }
if (Command == PCD_TRANSCEIVE)
{
n = ReadRawRC(FIFOLevelReg); //读FIFO中保存的字节数
lastBits = ReadRawRC(ControlReg) & 0x07; //最后接收到得字节的有效位数
if (lastBits)
{ *pOutLenBit = (n-1)*8 + lastBits; } //N个字节数减去1(最后一个字节)+最后一位的位数 读取到的数据总位数
else
{ *pOutLenBit = n*8; } //最后接收到的字节整个字节有效
if (n == 0)
{ n = 1; }
if (n > MAXRLEN)
{ n = MAXRLEN; }
for (i=0; i<n; i++)
{ pOutData[i] = ReadRawRC(FIFODataReg); }
}
}
else
{ status = MI_ERR; }
}
SetBitMask(ControlReg,0x80); // stop timer now
WriteRawRC(CommandReg,PCD_IDLE);
return status;
}
/////////////////////////////////////////////////////////////////////
//功 能:寻卡
//参数说明: req_code[IN]:寻卡方式
// 0x52 = 寻感应区内所有符合14443A标准的卡
// 0x26 = 寻未进入休眠状态的卡
// pTagType[OUT]:卡片类型代码
// 0x4400 = Mifare_UltraLight
// 0x0400 = Mifare_One(S50)
// 0x0200 = Mifare_One(S70)
// 0x0800 = Mifare_Pro(X)
// 0x4403 = Mifare_DESFire
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
char PcdRequest(unsigned char req_code,unsigned char *pTagType)
{
char status;
//uint i;
unsigned int unLen;
unsigned char ucComMF522Buf[MAXRLEN];
ClearBitMask(Status2Reg,0x08); //清理指示MIFARECyptol单元接通以及所有卡的数据通信被加密的情况
WriteRawRC(BitFramingReg,0x07); // 发送的最后一个字节的 七位
SetBitMask(TxControlReg,0x03); //TX1,TX2管脚的输出信号传递经发送调制的13.56的能量载波信号
ucComMF522Buf[0] = req_code; //存入 卡片命令字
status = PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,1,ucComMF522Buf,&unLen); //寻卡
if ((status == MI_OK) && (unLen == 0x10)) //寻卡成功返回卡类型
{
*pTagType = ucComMF522Buf[0];
*(pTagType+1) = ucComMF522Buf[1];
}
else
{
status = MI_ERR;
}
return status;
}
/////////////////////////////////////////////////////////////////////
//功 能:防冲撞
//参数说明: pSnr[OUT]:卡片序列号,4字节
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
char PcdAnticoll(unsigned char *pSnr)
{
char status;
unsigned char i,snr_check=0;
unsigned int unLen;
unsigned char ucComMF522Buf[MAXRLEN];
ClearBitMask(Status2Reg,0x08); //清MFCryptol On位 只有成功执行MFAuthent命令后,该位才能置位
WriteRawRC(BitFramingReg,0x00); //清理寄存器 停止收发
ClearBitMask(CollReg,0x80); //清ValuesAfterColl所有接收的位在冲突后被清除
// WriteRawRC(BitFramingReg,0x07); // 发送的最后一个字节的 七位
// SetBitMask(TxControlReg,0x03); //TX1,TX2管脚的输出信号传递经发送调制的13.56的能量载波信号
ucComMF522Buf[0] = 0x93; //卡片防冲突命令
ucComMF522Buf[1] = 0x20;
status = PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,2,ucComMF522Buf,&unLen);//与卡片通信
if (status == MI_OK) //通信成功
{
for (i=0; i<4; i++)
{
*(pSnr+i) = ucComMF522Buf[i]; //读出UID
snr_check ^= ucComMF522Buf[i];
}
if (snr_check != ucComMF522Buf[i])
{ status = MI_ERR; }
}
SetBitMask(CollReg,0x80);
return status;
}
/////////////////////////////////////////////////////////////////////
//用MF522计算CRC16函数
/////////////////////////////////////////////////////////////////////
void CalulateCRC(unsigned char *pIndata,unsigned char len,unsigned char *pOutData)
{
unsigned char i,n;
ClearBitMask(DivIrqReg,0x04);
WriteRawRC(CommandReg,PCD_IDLE);
SetBitMask(FIFOLevelReg,0x80);
for (i=0; i<len; i++)
{ WriteRawRC(FIFODataReg, *(pIndata+i)); }
WriteRawRC(CommandReg, PCD_CALCCRC);
i = 0xFF;
do
{
n = ReadRawRC(DivIrqReg);
i--;
}
while ((i!=0) && !(n&0x04));
pOutData[0] = ReadRawRC(CRCResultRegL);
pOutData[1] = ReadRawRC(CRCResultRegM);
}
/////////////////////////////////////////////////////////////////////
//功 能:选定卡片
//参数说明: pSnr[IN]:卡片序列号,4字节
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
char PcdSelect(unsigned char *pSnr)
{
char status;
unsigned char i;
unsigned int unLen;
unsigned char ucComMF522Buf[MAXRLEN];
ucComMF522Buf[0] = PICC_ANTICOLL1;
ucComMF522Buf[1] = 0x70;
ucComMF522Buf[6] = 0;
for (i=0; i<4; i++)
{
ucComMF522Buf[i+2] = *(pSnr+i);
ucComMF522Buf[6] ^= *(pSnr+i);
}
CalulateCRC(ucComMF522Buf,7,&ucComMF522Buf[7]);
ClearBitMask(Status2Reg,0x08);
status = PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,9,ucComMF522Buf,&unLen);
if ((status == MI_OK) && (unLen == 0x18))
{ status = MI_OK; }
else
{ status = MI_ERR; }
return status;
}
/////////////////////////////////////////////////////////////////////
//功 能:验证卡片密码
//参数说明: auth_mode[IN]: 密码验证模式
// 0x60 = 验证A密钥
// 0x61 = 验证B密钥
// addr[IN]:块地址
// pKey[IN]:密码
// pSnr[IN]:卡片序列号,4字节
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
char PcdAuthState(unsigned char auth_mode,unsigned char addr,unsigned char *pKey,unsigned char *pSnr)
{
char status;
unsigned int unLen;
unsigned char i,ucComMF522Buf[MAXRLEN];
ucComMF522Buf[0] = auth_mode;
ucComMF522Buf[1] = addr;
for (i=0; i<6; i++)
{ ucComMF522Buf[i+2] = *(pKey+i); }
for (i=0; i<6; i++)
{ ucComMF522Buf[i+8] = *(pSnr+i); }
// memcpy(&ucComMF522Buf[2], pKey, 6);
// memcpy(&ucComMF522Buf[8], pSnr, 4);
status = PcdComMF522(PCD_AUTHENT,ucComMF522Buf,12,ucComMF522Buf,&unLen);
if ((status != MI_OK) || (!(ReadRawRC(Status2Reg) & 0x08)))
{ status = MI_ERR; }
return status;
}
/////////////////////////////////////////////////////////////////////
//功 能:写数据到M1卡一块
//参数说明: addr[IN]:块地址
// pData[IN]:写入的数据,16字节
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
char PcdWrite(unsigned char addr,unsigned char *pData)
{
char status;
unsigned int unLen;
unsigned char i,ucComMF522Buf[MAXRLEN];
ucComMF522Buf[0] = PICC_WRITE;
ucComMF522Buf[1] = addr;
CalulateCRC(ucComMF522Buf,2,&ucComMF522Buf[2]);
status = PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,4,ucComMF522Buf,&unLen);
if ((status != MI_OK) || (unLen != 4) || ((ucComMF522Buf[0] & 0x0F) != 0x0A))
{ status = MI_ERR; }
if (status == MI_OK)
{
//memcpy(ucComMF522Buf, pData, 16);
for (i=0; i<16; i++)
{ ucComMF522Buf[i] = *(pData+i); }
CalulateCRC(ucComMF522Buf,16,&ucComMF522Buf[16]);
status = PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,18,ucComMF522Buf,&unLen);
if ((status != MI_OK) || (unLen != 4) || ((ucComMF522Buf[0] & 0x0F) != 0x0A))
{ status = MI_ERR; }
}
return status;
}
/////////////////////////////////////////////////////////////////////
//功 能:读取M1卡一块数据
//参数说明: addr[IN]:块地址
// pData[OUT]:读出的数据,16字节
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
char PcdRead(unsigned char addr,unsigned char *pData)
{
char status;
unsigned int unLen;
unsigned char i,ucComMF522Buf[MAXRLEN];
ucComMF522Buf[0] = PICC_READ;
ucComMF522Buf[1] = addr;
CalulateCRC(ucComMF522Buf,2,&ucComMF522Buf[2]);
status = PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,4,ucComMF522Buf,&unLen);
if ((status == MI_OK) && (unLen == 0x90))
// { memcpy(pData, ucComMF522Buf, 16); }
{
for (i=0; i<16; i++)
{ *(pData+i) = ucComMF522Buf[i]; }
}
else
{ status = MI_ERR; }
return status;
}
/////////////////////////////////////////////////////////////////////
//功 能:命令卡片进入休眠状态
//返 回: 成功返回MI_OK
/////////////////////////////////////////////////////////////////////
char PcdHalt(void)
{
// char status;
unsigned int unLen;
unsigned char ucComMF522Buf[MAXRLEN];
ucComMF522Buf[0] = PICC_HALT;
ucComMF522Buf[1] = 0;
CalulateCRC(ucComMF522Buf,2,&ucComMF522Buf[2]);
PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,4,ucComMF522Buf,&unLen);
// status = PcdComMF522(PCD_TRANSCEIVE,ucComMF522Buf,4,ucComMF522Buf,&unLen);
return MI_OK;
}
//void IC_CMT(uchar *UID,uchar *KEY,uchar RW,char *Dat)
//{
// uchar status = 0xab;
// uchar qq[16]=0;//IC卡的类型
// uchar IC_uid[16]=0;//IC卡的UID
//
// UartSend(PcdRequest(0x52,qq));//寻卡
// UartSend(PcdAnticoll(IC_uid));//防冲撞
//
// UartSend(PcdSelect(UID));//选定卡
//
// UartSend(PcdAuthState(0x60,0x10,KEY,UID));//校验
// if(RW)//读写选择,1是读,0是写
// {
// UartSend (PcdRead(0x10,Dat));
// }
// else
// {
// UartSend(PcdWrite(0x10,Dat));
// }
// UartSend(PcdHalt());
//}
//测试读写功能
unsigned char g_ucTempbuf[20]={0};
unsigned char DefaultKey[6] = {0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF};
void test(void)
{
unsigned char status;
status = PcdRequest(PICC_REQIDL, g_ucTempbuf); //寻天线区内全部卡
////////////////////////////////////////////////////////////////////////////////
if (status != MI_OK)
{
return;
}
/////////////////////////////////////////////////////////////////////
status = PcdAnticoll(g_ucTempbuf);//防冲撞
//////////////////////////////////////////////////////////////////////
if (status != MI_OK)
{
return;
}
/////////////////////////////////////////////////////////////////////
status = PcdSelect(g_ucTempbuf);//选卡
if (status != MI_OK)
{
return;
}
////////////////////////////////////////////////////////////////////////////
status = PcdAuthState(PICC_AUTHENT1A, 1, DefaultKey, g_ucTempbuf);//校验密码
if (status != MI_OK)
{
return;
}
/////////////////////////////////////////////////////////////////////////////
// status = PcdWrite(1, data1);//写块区
// if (status != MI_OK)
// {
// return;
// }
/////////////////////////////////////////////////////////////////////////////
status = PcdRead(1, g_ucTempbuf);//读块区
if (status != MI_OK)
{
return;
}
UartSend_String((char*)g_ucTempbuf,16);
PcdHalt(); //命令卡片进入休眠状态
}
//初始化IC卡
void IC_Init(void)
{
Initial();
PcdReset();
M500PcdConfigISOType('A');//设置工作方式
}
GenericApp.c
/*********************************************************************
* INCLUDES
*/
#include "OSAL.h"
#include "AF.h"
#include "ZDApp.h"
#include "ZDObject.h"
#include "ZDProfile.h"
#include "GenericApp.h"
#include "DebugTrace.h"
#if !defined( WIN32 ) || defined( ZBIT )
#include "OnBoard.h"
#endif
/* HAL */
#include "hal_lcd.h"
#include "hal_led.h"
#include "hal_key.h"
#include "hal_uart.h"
/* RTOS */
#if defined( IAR_ARMCM3_LM )
#include "RTOS_App.h"
#endif
#include "IC_w_r.h"
/*********************************************************************
* MACROS
*/
/*********************************************************************
* CONSTANTS
*/
/*********************************************************************
* TYPEDEFS
*/
/*********************************************************************
* GLOBAL VARIABLES
*/
// This list should be filled with Application specific Cluster IDs.
const cId_t GenericApp_ClusterList[GENERICAPP_MAX_CLUSTERS] =
{
GENERICAPP_CLUSTERID
};
const SimpleDescriptionFormat_t GenericApp_SimpleDesc =
{
GENERICAPP_ENDPOINT, // int Endpoint;
GENERICAPP_PROFID, // uint16 AppProfId[2];
GENERICAPP_DEVICEID, // uint16 AppDeviceId[2];
GENERICAPP_DEVICE_VERSION, // int AppDevVer:4;
GENERICAPP_FLAGS, // int AppFlags:4;
GENERICAPP_MAX_CLUSTERS, // byte AppNumInClusters;
(cId_t *)GenericApp_ClusterList, // byte *pAppInClusterList;
GENERICAPP_MAX_CLUSTERS, // byte AppNumInClusters;
(cId_t *)GenericApp_ClusterList // byte *pAppInClusterList;
};
// This is the Endpoint/Interface description. It is defined here, but
// filled-in in GenericApp_Init(). Another way to go would be to fill
// in the structure here and make it a "const" (in code space). The
// way it's defined in this sample app it is define in RAM.
endPointDesc_t GenericApp_epDesc;
/*********************************************************************
* EXTERNAL VARIABLES
*/
/*********************************************************************
* EXTERNAL FUNCTIONS
*/
/*********************************************************************
* LOCAL VARIABLES
*/
byte GenericApp_TaskID; // Task ID for internal task/event processing
// This variable will be received when
// GenericApp_Init() is called.
devStates_t GenericApp_NwkState;
byte GenericApp_TransID; // This is the unique message ID (counter)
afAddrType_t GenericApp_DstAddr;
// Number of recieved messages
static uint16 rxMsgCount;
// Time interval between sending messages
static uint32 txMsgDelay = GENERICAPP_SEND_MSG_TIMEOUT;
/*********************************************************************
* LOCAL FUNCTIONS
*/
static void GenericApp_ProcessZDOMsgs( zdoIncomingMsg_t *inMsg );
static void GenericApp_HandleKeys( byte shift, byte keys );
static void GenericApp_MessageMSGCB( afIncomingMSGPacket_t *pckt );
static void GenericApp_SendTheMessage( void );
#if defined( IAR_ARMCM3_LM )
static void GenericApp_ProcessRtosMessage( void );
#endif
/*********************************************************************
* NETWORK LAYER CALLBACKS
*/
/*********************************************************************
* PUBLIC FUNCTIONS
*/
/*********************************************************************
* @fn GenericApp_Init
*
* @brief Initialization function for the Generic App Task.
* This is called during initialization and should contain
* any application specific initialization (ie. hardware
* initialization/setup, table initialization, power up
* notificaiton ... ).
*
* @param task_id - the ID assigned by OSAL. This ID should be
* used to send messages and set timers.
*
* @return none
*/
void GenericApp_Init( uint8 task_id )
{
GenericApp_TaskID = task_id;
GenericApp_NwkState = DEV_INIT;
GenericApp_TransID = 0;
IC_Init();
// Device hardware initialization can be added here or in main() (Zmain.c).
// If the hardware is application specific - add it here.
// If the hardware is other parts of the device add it in main().
GenericApp_DstAddr.addrMode = (afAddrMode_t)AddrNotPresent;
GenericApp_DstAddr.endPoint = 0;
GenericApp_DstAddr.addr.shortAddr = 0;
// Fill out the endpoint description.
GenericApp_epDesc.endPoint = GENERICAPP_ENDPOINT;
GenericApp_epDesc.task_id = &GenericApp_TaskID;
GenericApp_epDesc.simpleDesc
= (SimpleDescriptionFormat_t *)&GenericApp_SimpleDesc;
GenericApp_epDesc.latencyReq = noLatencyReqs;
// Register the endpoint description with the AF
afRegister( &GenericApp_epDesc );
// Register for all key events - This app will handle all key events
RegisterForKeys( GenericApp_TaskID );
// Update the display
#if defined ( LCD_SUPPORTED )
HalLcdWriteString( "GenericApp", HAL_LCD_LINE_1 );
#endif
ZDO_RegisterForZDOMsg( GenericApp_TaskID, End_Device_Bind_rsp );
ZDO_RegisterForZDOMsg( GenericApp_TaskID, Match_Desc_rsp );
#if defined( IAR_ARMCM3_LM )
// Register this task with RTOS task initiator
RTOS_RegisterApp( task_id, GENERICAPP_RTOS_MSG_EVT );
#endif
}
/*********************************************************************
* @fn GenericApp_ProcessEvent
*
* @brief Generic Application Task event processor. This function
* is called to process all events for the task. Events
* include timers, messages and any other user defined events.
*
* @param task_id - The OSAL assigned task ID.
* @param events - events to process. This is a bit map and can
* contain more than one event.
*
* @return none
*/
uint16 GenericApp_ProcessEvent( uint8 task_id, uint16 events )
{
afIncomingMSGPacket_t *MSGpkt;
afDataConfirm_t *afDataConfirm;
// Data Confirmation message fields
byte sentEP;
ZStatus_t sentStatus;
byte sentTransID; // This should match the value sent
(void)task_id; // Intentionally unreferenced parameter
if ( events & SYS_EVENT_MSG )
{
MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( GenericApp_TaskID );
while ( MSGpkt )
{
switch ( MSGpkt->hdr.event )
{
case ZDO_CB_MSG:
GenericApp_ProcessZDOMsgs( (zdoIncomingMsg_t *)MSGpkt );
break;
case KEY_CHANGE:
GenericApp_HandleKeys( ((keyChange_t *)MSGpkt)->state, ((keyChange_t *)MSGpkt)->keys );
break;
case AF_DATA_CONFIRM_CMD:
// This message is received as a confirmation of a data packet sent.
// The status is of ZStatus_t type [defined in ZComDef.h]
// The message fields are defined in AF.h
afDataConfirm = (afDataConfirm_t *)MSGpkt;
sentEP = afDataConfirm->endpoint;
(void)sentEP; // This info not used now
sentTransID = afDataConfirm->transID;
(void)sentTransID; // This info not used now
sentStatus = afDataConfirm->hdr.status;
// Action taken when confirmation is received.
if ( sentStatus != ZSuccess )
{
// The data wasn't delivered -- Do something
}
break;
case AF_INCOMING_MSG_CMD:
GenericApp_MessageMSGCB( MSGpkt );
break;
case ZDO_STATE_CHANGE:
GenericApp_NwkState = (devStates_t)(MSGpkt->hdr.status);
if ( (GenericApp_NwkState == DEV_ZB_COORD) ||
(GenericApp_NwkState == DEV_ROUTER) ||
(GenericApp_NwkState == DEV_END_DEVICE) )
{
// Start sending "the" message in a regular interval.
osal_start_timerEx( GenericApp_TaskID,
GENERICAPP_SEND_MSG_EVT,
txMsgDelay );
}
break;
default:
break;
}
// Release the memory
osal_msg_deallocate( (uint8 *)MSGpkt );
// Next
MSGpkt = (afIncomingMSGPacket_t *)osal_msg_receive( GenericApp_TaskID );
}
// return unprocessed events
return (events ^ SYS_EVENT_MSG);
}
// Send a message out - This event is generated by a timer
// (setup in GenericApp_Init()).
if ( events & GENERICAPP_SEND_MSG_EVT )
{
// Send "the" message
//GenericApp_SendTheMessage();
test();
// Setup to send message again
osal_start_timerEx( GenericApp_TaskID,
GENERICAPP_SEND_MSG_EVT,
txMsgDelay );
// return unprocessed events
return (events ^ GENERICAPP_SEND_MSG_EVT);
}
#if defined( IAR_ARMCM3_LM )
// Receive a message from the RTOS queue
if ( events & GENERICAPP_RTOS_MSG_EVT )
{
// Process message from RTOS queue
GenericApp_ProcessRtosMessage();
// return unprocessed events
return (events ^ GENERICAPP_RTOS_MSG_EVT);
}
#endif
// Discard unknown events
return 0;
}
/*********************************************************************
* Event Generation Functions
*/
/*********************************************************************
* @fn GenericApp_ProcessZDOMsgs()
*
* @brief Process response messages
*
* @param none
*
* @return none
*/
static void GenericApp_ProcessZDOMsgs( zdoIncomingMsg_t *inMsg )
{
switch ( inMsg->clusterID )
{
case End_Device_Bind_rsp:
if ( ZDO_ParseBindRsp( inMsg ) == ZSuccess )
{
// Light LED
HalLedSet( HAL_LED_4, HAL_LED_MODE_ON );
}
#if defined( BLINK_LEDS )
else
{
// Flash LED to show failure
HalLedSet ( HAL_LED_4, HAL_LED_MODE_FLASH );
}
#endif
break;
case Match_Desc_rsp:
{
ZDO_ActiveEndpointRsp_t *pRsp = ZDO_ParseEPListRsp( inMsg );
if ( pRsp )
{
if ( pRsp->status == ZSuccess && pRsp->cnt )
{
GenericApp_DstAddr.addrMode = (afAddrMode_t)Addr16Bit;
GenericApp_DstAddr.addr.shortAddr = pRsp->nwkAddr;
// Take the first endpoint, Can be changed to search through endpoints
GenericApp_DstAddr.endPoint = pRsp->epList[0];
// Light LED
HalLedSet( HAL_LED_4, HAL_LED_MODE_ON );
}
osal_mem_free( pRsp );
}
}
break;
}
}
/*********************************************************************
* @fn GenericApp_HandleKeys
*
* @brief Handles all key events for this device.
*
* @param shift - true if in shift/alt.
* @param keys - bit field for key events. Valid entries:
* HAL_KEY_SW_4
* HAL_KEY_SW_3
* HAL_KEY_SW_2
* HAL_KEY_SW_1
*
* @return none
*/
static void GenericApp_HandleKeys( uint8 shift, uint8 keys )
{
zAddrType_t dstAddr;
// Shift is used to make each button/switch dual purpose.
if ( shift )
{
if ( keys & HAL_KEY_SW_1 )
{
}
if ( keys & HAL_KEY_SW_2 )
{
}
if ( keys & HAL_KEY_SW_3 )
{
}
if ( keys & HAL_KEY_SW_4 )
{
}
}
else
{
if ( keys & HAL_KEY_SW_1 )
{
#if defined( SWITCH1_BIND )
// We can use SW1 to simulate SW2 for devices that only have one switch,
keys |= HAL_KEY_SW_2;
#elif defined( SWITCH1_MATCH )
// or use SW1 to simulate SW4 for devices that only have one switch
keys |= HAL_KEY_SW_4;
#else
// Normally, SW1 changes the rate that messages are sent
if ( txMsgDelay > 100 )
{
// Cut the message TX delay in half
txMsgDelay /= 2;
}
else
{
// Reset to the default
txMsgDelay = GENERICAPP_SEND_MSG_TIMEOUT;
}
#endif
}
if ( keys & HAL_KEY_SW_2 )
{
HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );
// Initiate an End Device Bind Request for the mandatory endpoint
dstAddr.addrMode = Addr16Bit;
dstAddr.addr.shortAddr = 0x0000; // Coordinator
ZDP_EndDeviceBindReq( &dstAddr, NLME_GetShortAddr(),
GenericApp_epDesc.endPoint,
GENERICAPP_PROFID,
GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
FALSE );
}
if ( keys & HAL_KEY_SW_3 )
{
}
if ( keys & HAL_KEY_SW_4 )
{
HalLedSet ( HAL_LED_4, HAL_LED_MODE_OFF );
// Initiate a Match Description Request (Service Discovery)
dstAddr.addrMode = AddrBroadcast;
dstAddr.addr.shortAddr = NWK_BROADCAST_SHORTADDR;
ZDP_MatchDescReq( &dstAddr, NWK_BROADCAST_SHORTADDR,
GENERICAPP_PROFID,
GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
GENERICAPP_MAX_CLUSTERS, (cId_t *)GenericApp_ClusterList,
FALSE );
}
}
}
/*********************************************************************
* LOCAL FUNCTIONS
*/
/*********************************************************************
* @fn GenericApp_MessageMSGCB
*
* @brief Data message processor callback. This function processes
* any incoming data - probably from other devices. So, based
* on cluster ID, perform the intended action.
*
* @param none
*
* @return none
*/
static void GenericApp_MessageMSGCB( afIncomingMSGPacket_t *pkt )
{
switch ( pkt->clusterId )
{
case GENERICAPP_CLUSTERID:
rxMsgCount += 1; // Count this message
HalLedSet ( HAL_LED_4, HAL_LED_MODE_BLINK ); // Blink an LED
#if defined( LCD_SUPPORTED )
HalLcdWriteString( (char*)pkt->cmd.Data, HAL_LCD_LINE_1 );
HalLcdWriteStringValue( "Rcvd:", rxMsgCount, 10, HAL_LCD_LINE_2 );
#elif defined( WIN32 )
WPRINTSTR( pkt->cmd.Data );
#endif
break;
}
}
/*********************************************************************
* @fn GenericApp_SendTheMessage
*
* @brief Send "the" message.
*
* @param none
*
* @return none
*/
static void GenericApp_SendTheMessage( void )
{
char theMessageData[] = "Hello World";
if ( AF_DataRequest( &GenericApp_DstAddr, &GenericApp_epDesc,
GENERICAPP_CLUSTERID,
(byte)osal_strlen( theMessageData ) + 1,
(byte *)&theMessageData,
&GenericApp_TransID,
AF_DISCV_ROUTE, AF_DEFAULT_RADIUS ) == afStatus_SUCCESS )
{
// Successfully requested to be sent.
}
else
{
// Error occurred in request to send.
}
}
#if defined( IAR_ARMCM3_LM )
/*********************************************************************
* @fn GenericApp_ProcessRtosMessage
*
* @brief Receive message from RTOS queue, send response back.
*
* @param none
*
* @return none
*/
static void GenericApp_ProcessRtosMessage( void )
{
osalQueue_t inMsg;
if ( osal_queue_receive( OsalQueue, &inMsg, 0 ) == pdPASS )
{
uint8 cmndId = inMsg.cmnd;
uint32 counter = osal_build_uint32( inMsg.cbuf, 4 );
switch ( cmndId )
{
case CMD_INCR:
counter += 1; /* Increment the incoming counter */
/* Intentionally fall through next case */
case CMD_ECHO:
{
userQueue_t outMsg;
outMsg.resp = RSP_CODE | cmndId; /* Response ID */
osal_buffer_uint32( outMsg.rbuf, counter ); /* Increment counter */
osal_queue_send( UserQueue1, &outMsg, 0 ); /* Send back to UserTask */
break;
}
default:
break; /* Ignore unknown command */
}
}
}
#endif
/*********************************************************************
*/
SPI的话,建议不要使用模拟的。ZSTACK里有带SPI的驱动,并且使用了DMA.
osal系统里面不要有delay这样的操作。
