微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 硬件电路设计 > 电子元器件 > 自恢复保险丝技术标准

自恢复保险丝技术标准

时间:10-02 整理:3721RD 点击:
深圳松美健电子有限公司专家说道: 高分子PTC热敏电阻由于电阻可恢复,因而可以重复多次使用。电阻一般在十几秒到几十秒中即可恢复到初始值1.6倍左右的水平,此时热敏电阻的维持电流已经恢复到额定值,可以再次使用了。一般说来,面积和厚度较小的热敏电阻恢复相对较快;而面积和厚度较大的热敏电阻恢复相对较慢。

  温度对自恢复保险丝元件的影响(http://www.somay-ptc.com/)

  高分子PTC自复保险丝是一种直热式、阶跃型热敏电阻,其电阻变化过程与自身的发热和散热情况有关,因而其维持电流IH、动作电流IT及动作时间受环境温度影响。

    当环境温度和电流处于A区时,热敏电阻发热功率大于散热功率而会动作;当环境温度和电流处于B区时,热敏电阻的散热功率与发热功率接近,因而可能动作也可能不动作;当环境温度和电流处于C区时发热功率小于散热功率,热敏电阻将长期处于不动作状态。

  符号说明:

  Ih 自恢复保险丝元件在25℃ 环境温度下的最大的工作电流

  It 自恢复保险丝元件在25℃环境温度下启动保护的最小电流

  Imax 自恢复保险丝元件能承受最大电流

  Pdmax 自恢复保险丝元件工作状态下的消耗功效

  Vmax 自恢复保险丝元件的最大工作电压

  Vmaxi 自恢复保险丝元件在阻断状态下所承受的最大电压

  Rmin 自恢复保险丝元件工作前的初始最小阻值

  Rmaxi 自恢复保险丝元件末工作前的初始最大阻值

  选型指南:

  1、 列出设备线路上的平均工作电流(I)和最大的工作电压(V)

  2、 列出工作环境温度正常值及范围,按折减率计算正常电流Ih (详见环境温度与电流值的折减率表)

  Ih =平均工作电流(I) ÷ 环境温度与电流值的折减率

  3、根据L 、V值,产品类别及安装方式选择一种自复保险丝系列。(参考各规格表)

  4、 选出的自复保险丝的I值必须小于或等于Ih,额定电流是在一定的条件下给出的,如果要求工作在较宽的温度范围,应该留有一定的裕量,一般可以取1.5-2倍。

  5、Vmax指的是击穿电压,交直流均可以用。

  6、保护动作时间与电流成反比,但是至少是额定电流的两倍,类似于熔丝管。

  7、由于是半导体聚合物器件,所以开关次数不会那末少的。

  8、使用时注意它有一定导通电阻,额定电流越大,电阻越小;高压型的电阻要更大一些。

  高分子PTC自恢复保险丝技术标准

  1、 额定零功率电阻

  PPTC热敏电阻应按零功率电阻分档包装,并在外包装标明阻值范围。耐压、耐流能力测试后,每组样品中自身前的电阻变化率极差δ|Ri后-Ri前/Ri前-(Rj后-Rj前)/Rj前 |≤100%

  2、 PTC效应

  说一种材料具有PTC (Positive Temperature Coefficient) 效应, 即正温度系数效应,仅指此材料的电阻会随温度的升高而增加。如大多数金属材料都具有PTC效应。在这些材料中,PTC效应表现为电阻随温度增加而线性增加,这就是通常所说的线性PTC效应。

  3、 非线性PTC效应

  经过相变的材料会呈现出电阻沿狭窄温度范围内急剧增加几个至十几个数量级的现象,即非线性PTC效应。相当多种类型的导电聚合体会呈现出这种效应,如高分子PTC热敏电阻。这些导电聚合体对于制造过电流保护装置来说非常有用。

  4、 初始电阻 Rmin

  在被安装到电路中之前,环境温度为25℃的条件下测试,自恢复保险丝系列的高分子PTC热敏电阻的阻值。

  5、 Rmax

  在室温条件下,自复保险丝系列高分子PTC热敏电阻动作或回流焊接安装到电路板中一小时后测得的最大电阻值。

  6、 最小电阻(Rmin)/最大电阻(Rmax)

  在指定环境温度下,例如:25℃,安装到电路之前特定型号的自复保险丝系列高分子热敏电阻的阻值会在规定的一个范围内,即在最小值(Rmin)和最大值(Rmax)之间。此值被列在规格书中的电阻栏里。

  7、 维持电流 Ihold

  维持电流是自复保险丝系列高分子PTC热敏电阻保持不动作情况下可以通过的最大电流。在限定环境条件下,装置可保持无限长的时间,而不会从低阻状态转变至高阻状态。

  8、 动作电流 Itrip

  在限定环境条件下,使自复保险丝系列高分子热敏电阻在限定的时间内动作的最小稳态电流。

  9、 最大电流 Imax (耐流值)

  在限定状态下, 自复保险丝系列高分子PTC热敏电阻安全动作的最大动作电流,即热敏电阻的耐流值。超过此值,热敏电阻有可能损坏,不能恢复。此值被列在规格书中的耐流值一栏里。

  10、泄漏电流Ires

  自恢复保险丝系列高分子PTC热敏电阻锁定在其高阻状态时,通过热敏电阻的电流。

  11、最大工作电流/正常操作电流

  在正常的操作条件下,流过电路的最大电流。在电路的最大环境工作温度下,用来保护电路的自复保险丝系列高分子PTC热敏电阻的维持电流一般来说比工作电流大。

  12、动作

  自复保险丝系列高分子PTC热敏电阻在过电流发生或环境温度增加时由低阻值向高阻值转变的过程。

  13、动作时间

  过电流发生开始至热敏电阻动作完成所需的时间。对任何特定的自复保险丝系列高分子PTC热敏电阻而言,流经电路的电流越大,或工作的环境温度越高,其动作时间越短。

  14、Vmax 最大电压(耐压值)

  在限定条件下, 自恢复保险丝系列高分子PTC热敏电阻动作时,能安全承受的最高电压。即热敏电阻的耐压值。超过此值,热敏电阻有可能被击穿,不能恢复。此值通常被列在规格书中的耐压值一栏里。

  15、最大工作电压

  在正常动作状态下,跨过自复保险丝系列高分子PTC热敏电阻两端的最大电压。在许多电路中,相当于电路中电源的电压。

  16、导电聚合体

  在此指由导电粒子(炭黑,碳纤维,金属粉末,金属氧化物等)填充绝缘的高分子材料(聚烯烃,环氧树脂等)而制得的导电复合材料。

  17、环境温度

  在热敏电阻或者一个联有热敏电阻元件的电路周围静止空气的温度。

  18、工作温度范围

  P元件可以安全工作的环境温度范围。

  19、最大工作环境温度

  预期元件可以安全工作的最高环境温度。

  20、功率耗损

  自复保险丝系列高分子PTC热敏电阻动作后所消耗的功率,通过计算流过热敏电阻的泄漏电流和跨过热敏电阻的电压的乘积得到。

  21、高温,高湿老化

  在室温下, 测量自复保险丝系列高分子PTC热敏电阻在较长时间(如150小时)处于较高温度(如85℃)及高湿度(如85% 湿度)状态前后的阻值的变化。

  22、被动老化测试

  室温下,测量自恢复保险丝系列高分子PTC热敏电阻长时间(如1000小时)处于较高温度(如70℃或85℃)状态前后的阻值变化。

  23、冷热打击测试

  在室温下,自恢复保险丝系列高分子PTC热敏电阻的阻值在温度循环前后的变化的测试结果。(例如,在-55℃及+125℃之间循环10次)。

  24、PTC强度β

  PTC热敏电阻具有足够的PTC强度且不能出现NTC现象。 β=lgR140°C/R室温≥5 R140°C、R室温 为140℃与室温时的额定零功率电阻值。

  25、动作特性

  PTC热敏电阻在耐压、耐流试验前、后都应进行不动作特性测试,并且,其中R为进行不动作特性试验时热敏电阻两端的U/I,Rn为额定零功率电阻初测值或复测值。

  26、恢复时间

  PTC热敏电阻动作后的恢复时间应不大于60S。

  27、失效模式试验

  在进行失效模式试验时,高聚PTC热敏电阻可能随试验或处于失效状态,允许的失效模式是开路或高阻状态,但整个试验过程中不得出现低阻态或起明火。

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top