关于用sentaurus仿真SiGe 应变器件的问题
时间:03-15
整理:3721RD
点击:
请教:关于用sentaurus仿真SiGe 应变器件的问题?
我用devise工具复现文献中的SiGe 应变器件,并用sdevice工具进行仿真,仿真脚本如下:
File {
Grid= "SiGe_NMOS_msh.grd"
Doping= "SiGe_NMOS_msh.dat"
Current= "SiGe_NMOS_msh.plt"
Plot= "SiGe_NMOS_msh.dat"
Parameter = "SiGe_material.par"
Piezo="SiGe_NMOS_msh.dat"
}
Electrode {
{ Name="C_SourceN"Voltage=0 }
{ Name="C_SubstrateN"Voltage=0 }
{ Name="C_GateN"Voltage=1.0}
{ Name="C_DrAInN"Voltage=0 }
}
Physics{
Temperature=300
*eQCvanDort
*hQCvanDort
eQuantumPotential
*hQuantumPotential
*EffectiveIntrinsicDensity( BandGapNarrowing ( BennettWilson ))
EffectiveIntrinsicDensity(Slotboom )
*EffectiveIntrinsicDensity( NoBandGapNarrowing )
*EffectiveIntrinsicDensity( BandGapNarrowing ( delAlamo ))
*-- BennettWilson,delAlamo, OldSlotboom, and Slotboom
Mobility(
*--carrier mobility degradation due to doping concertration
DopingDependence
PhuMob
*--velocity saturation within high field regions
*HighFieldSaturation
eHighFieldSaturation( GradQuasiFermi )
*hHighFieldSaturation( GradQuasiFermi )
Enormal(Lombardi)
*--mobility degradation due to surface roughness scattering
*Enormal
)
Recombination(
SRH( DopingDependence Tunneling )
*SRH( DopingDependence )
*Band2Band(Hurkx)
*SRH( ElectricField ( Lifetime = Hurkx DensityCorrection =None ))
*SRH
Auger
)
}
Physics ( Material= "SiliconGermanium" ) {
MoleFraction(RegionName=["Channel.stress.GeSiN"]xFraction = 0.9 Grading = 0.0 )
Piezo(
Model(
Mobility(
eSubband(Egley)
hSixband(Doping)
)
)
)
}
Plot{
*--Density and Currents, etc
eDensity hDensity
TotalCurrent/Vector eCurrent/Vector hCurrent/Vector
eMobility hMobility
eVelocity hVelocity
eQuasiFermi hQuasiFermi
*--Fields and charges
ElectricField/Vector Potential SpaceCharge
*--Doping Profiles
Doping DonorConcentration AcceptorConcentration
*--Generation/Recombination
SRH Band2Band * Auger
* AvalancheGeneration eAvalancheGeneration hAvalancheGeneration
*--Driving forces
eGradQuasiFermi/Vector hGradQuasiFermi/Vector
eEparallel hEparallel eENormal hENormal
*--Band structure/Composition
BandGap
BandGapNarrowing
Affinity
ConductionBand ValenceBand
eQuantumPotential hQuantumPotential
*--Gate Tunneling
* eBarrierTunneling hBarrierTunnelingBarrierTunneling
* eDirectTunnel hDirectTunnel
xMoleFraction
}
Math {
Extrapolate
* Avalderivatives
RelErrControl
Digits=5
*-CheckUndefinedModels
Notdamped=50
Iterations=20
DirectCurrent
* NoSRHperPotential
}
Solve {
#- Creating initial guess:
Coupled(Iterations=100 LineSearchDamping=1e-4){ Poisson }
Coupled { Poisson Electron hole }
#- Vg sweep
NewCurrentFile="IdVd_"
Quasistationary(
DoZero
InitialStep=5e-3 Increment=1.5
MinStep=5e-5 MaxStep=0.5
Goal { Name="C_DrainN" Voltage=2.5}
){ Coupled { PoissonElectron hole}
CurrentPlot( Time=(Range=(0 1) Intervals=20))
}
}
仿真结果与传统的Si器件(尺寸和摻杂与都相同)相比,在相同的栅电压的条件下,SiGe的漏电流还比Si小。
请教:各位前辈,问题出现在什么地方?已经快一个月了?还是没有解决!
非常感谢!
我用devise工具复现文献中的SiGe 应变器件,并用sdevice工具进行仿真,仿真脚本如下:
File {
Grid= "SiGe_NMOS_msh.grd"
Doping= "SiGe_NMOS_msh.dat"
Current= "SiGe_NMOS_msh.plt"
Plot= "SiGe_NMOS_msh.dat"
Parameter = "SiGe_material.par"
Piezo="SiGe_NMOS_msh.dat"
}
Electrode {
{ Name="C_SourceN"Voltage=0 }
{ Name="C_SubstrateN"Voltage=0 }
{ Name="C_GateN"Voltage=1.0}
{ Name="C_DrAInN"Voltage=0 }
}
Physics{
Temperature=300
*eQCvanDort
*hQCvanDort
eQuantumPotential
*hQuantumPotential
*EffectiveIntrinsicDensity( BandGapNarrowing ( BennettWilson ))
EffectiveIntrinsicDensity(Slotboom )
*EffectiveIntrinsicDensity( NoBandGapNarrowing )
*EffectiveIntrinsicDensity( BandGapNarrowing ( delAlamo ))
*-- BennettWilson,delAlamo, OldSlotboom, and Slotboom
Mobility(
*--carrier mobility degradation due to doping concertration
DopingDependence
PhuMob
*--velocity saturation within high field regions
*HighFieldSaturation
eHighFieldSaturation( GradQuasiFermi )
*hHighFieldSaturation( GradQuasiFermi )
Enormal(Lombardi)
*--mobility degradation due to surface roughness scattering
*Enormal
)
Recombination(
SRH( DopingDependence Tunneling )
*SRH( DopingDependence )
*Band2Band(Hurkx)
*SRH( ElectricField ( Lifetime = Hurkx DensityCorrection =None ))
*SRH
Auger
)
}
Physics ( Material= "SiliconGermanium" ) {
MoleFraction(RegionName=["Channel.stress.GeSiN"]xFraction = 0.9 Grading = 0.0 )
Piezo(
Model(
Mobility(
eSubband(Egley)
hSixband(Doping)
)
)
)
}
Plot{
*--Density and Currents, etc
eDensity hDensity
TotalCurrent/Vector eCurrent/Vector hCurrent/Vector
eMobility hMobility
eVelocity hVelocity
eQuasiFermi hQuasiFermi
*--Fields and charges
ElectricField/Vector Potential SpaceCharge
*--Doping Profiles
Doping DonorConcentration AcceptorConcentration
*--Generation/Recombination
SRH Band2Band * Auger
* AvalancheGeneration eAvalancheGeneration hAvalancheGeneration
*--Driving forces
eGradQuasiFermi/Vector hGradQuasiFermi/Vector
eEparallel hEparallel eENormal hENormal
*--Band structure/Composition
BandGap
BandGapNarrowing
Affinity
ConductionBand ValenceBand
eQuantumPotential hQuantumPotential
*--Gate Tunneling
* eBarrierTunneling hBarrierTunnelingBarrierTunneling
* eDirectTunnel hDirectTunnel
xMoleFraction
}
Math {
Extrapolate
* Avalderivatives
RelErrControl
Digits=5
*-CheckUndefinedModels
Notdamped=50
Iterations=20
DirectCurrent
* NoSRHperPotential
}
Solve {
#- Creating initial guess:
Coupled(Iterations=100 LineSearchDamping=1e-4){ Poisson }
Coupled { Poisson Electron hole }
#- Vg sweep
NewCurrentFile="IdVd_"
Quasistationary(
DoZero
InitialStep=5e-3 Increment=1.5
MinStep=5e-5 MaxStep=0.5
Goal { Name="C_DrainN" Voltage=2.5}
){ Coupled { PoissonElectron hole}
CurrentPlot( Time=(Range=(0 1) Intervals=20))
}
}
仿真结果与传统的Si器件(尺寸和摻杂与都相同)相比,在相同的栅电压的条件下,SiGe的漏电流还比Si小。
请教:各位前辈,问题出现在什么地方?已经快一个月了?还是没有解决!
非常感谢!
一般情况下,SiGe的漏电流应该比Si要大才是对的!
i tried to simulate SiGe Mos capacitor in silvaco but it didn't give accurate results ... is sentaurus better than silvaco in this respect?
应该和软件没有关系。
材料变化了,要分析机理及所用模型是否正确,Sige器件没有仿过,物理模型看你是有加,但你仿的是SiGe的什么样结构器件?
另外从你的cmd文件来看, "SiGe_material.par" 参数不知道都修改成什么样子?是否确认正确了?
另外问下,用的是哪个版本?自己D仿真的还是?