智能天线有哪些用途及优点
时间:10-02
整理:3721RD
点击:
移动通信信道传输环境较恶劣,多径衰落、时延扩展造成的符号间串扰ISI(Inter-Symbol Interference)、FDMA TDMA系统(如GSM)由于频率复用引入的同信道干扰(CCI,Co-Channel Interference)、CDMA系统中的MAI(Multiple Access Interference)等都使链路性能、系统容量下降,我们熟知的均衡、码匹配滤波、RAKE接收、信道编译码技术等都是为了对抗或者减小它们的影响。这些技术实际利用的都是时、频域信息,而实际上有用信号、其时延样本(delay version)和干扰信号在时、频域存在差异的同时,在空域(入射角DOA,Direction Of Arrival)也存在差异,分集天线(antenna diversity)、特别是扇形天线(sector antenna)可看作是对这部分资源的初步利用,而要更充分地利用它只有采用智能天线技术。
智能天线是一种升缩性较好的技术。在移动通信发展的早期,运营商为节约投资,总是希望用尽可能少的基站覆盖尽可能大的区域,这就意味着用户的信号在到达BTS(基站收发信设备)前可能经历了较长的传播路径,有较大的路径损耗(path loss),为使接收到的有用信号不至于低于门限,要么增加移动台的发射功率、要么增加基站天线的接收增益,由于移动台(特别是手机)的发射功率通常是有限的,真正可行的是增加天线增益,相对而言用智能天线实现较大增益比用单天线容易。
而在移动通信发展的中、晚期,为扩大系统容量、支持更多用户,需要收缩小区范围、降低频率复用系数提高频率利用率,通常采用的方法是小区分裂和扇区化,随之而来的是干扰增加,原来被距离(其实是借助路径损耗)有效降低的CCI和MAI较大比例地增加了。但利用智能天线,借助有用信号和干扰信号在入射角度上的差异,选择恰当的合并权值,形成正确的天线接收模式,即将主瓣对准有用信号,低增益副瓣对准主要的干扰信号,从而可更有效地抑制干扰,更大比例地降低频率复用因子(比如在GSM中使复用因子3成为可能),和同时支持更多用户(CDMA中)。从某种角度我们可将智能天线看作是更灵活、主瓣更窄的扇形天线。
智能天线的又一个好处是可减小多径效应,CDMA中利用RAKE接收机可对时延差大于一个码片的多径进行分离和相干合并,而借助智能天线可以对时延不可分但角度可分的多径进行进一步分离,从而更有效减小多径效应。
采用智能天线技术的主要目的是为了更有效地对抗移动通信信道,而时分、码分多址系统的信道传输环境从本质上讲是一样的,所以除了具体算法上的差异外,智能天线可广泛应用于各种时分、码分多址系统,包括已商用的第二代系统,即是一种广泛适用的系统。
智能天线另一个可能的用途是进行紧急呼叫定位,并提供更高的定位精度,因为在获得可用于定位的时延、强度等信息的同时,它还可获得波达角信息。
智能天线可以明显改善无线通信系统的性能,提高系统的容量。具体体现在下列方面:
提高频谱利用率。采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营商成本。
迅速解决稠密市区容量瓶颈。未来的智能天线应能允许任一无线信道与任一波束配对,这样就可按需分配信道,保证呼叫阻塞严重的地区获得较多信道资源,等效于增加了此类地区的无线网络容量。
抑制干扰信号。智能天线对来自各个方向的波束进行空间滤波。它通过对各天线元的激励进行调整,优化天线阵列方向图,将零点对准干扰方向,大大提高阵列的输出信干比,改善了系统质量,提高了系统可靠性。对于软容量的CDMA系统,信干比的提高还意味着系统容量的提高。
抗衰落。高频无线通信的主要问题是信号的衰落,普通全向天线或定向天线都会因衰落使信号失真较大。如果采用智能天线控制接收方向,自适应地构成波束的方向性,可以使得延迟波方向的增益最小,降低信号衰落的影响。智能天线还可用于分集,减少衰落。
实现移动台定位。采用智能天线的基站可以获得接收信号的空间特征矩阵,由此获得信号的功率估值和到达方向。通过此方法,用两个基站就可将用户终端定位到一个较小区域。由于目前蜂窝移动通信系统只能确定移动台所处的小区,因此移动台定位的实现可以使许多与位置有关的新业务得以方便地推出,而发展新业务是目前移动运营商提升ARPU值、加强自身竞争力的必然手段。
智能天线是一种升缩性较好的技术。在移动通信发展的早期,运营商为节约投资,总是希望用尽可能少的基站覆盖尽可能大的区域,这就意味着用户的信号在到达BTS(基站收发信设备)前可能经历了较长的传播路径,有较大的路径损耗(path loss),为使接收到的有用信号不至于低于门限,要么增加移动台的发射功率、要么增加基站天线的接收增益,由于移动台(特别是手机)的发射功率通常是有限的,真正可行的是增加天线增益,相对而言用智能天线实现较大增益比用单天线容易。
而在移动通信发展的中、晚期,为扩大系统容量、支持更多用户,需要收缩小区范围、降低频率复用系数提高频率利用率,通常采用的方法是小区分裂和扇区化,随之而来的是干扰增加,原来被距离(其实是借助路径损耗)有效降低的CCI和MAI较大比例地增加了。但利用智能天线,借助有用信号和干扰信号在入射角度上的差异,选择恰当的合并权值,形成正确的天线接收模式,即将主瓣对准有用信号,低增益副瓣对准主要的干扰信号,从而可更有效地抑制干扰,更大比例地降低频率复用因子(比如在GSM中使复用因子3成为可能),和同时支持更多用户(CDMA中)。从某种角度我们可将智能天线看作是更灵活、主瓣更窄的扇形天线。
智能天线的又一个好处是可减小多径效应,CDMA中利用RAKE接收机可对时延差大于一个码片的多径进行分离和相干合并,而借助智能天线可以对时延不可分但角度可分的多径进行进一步分离,从而更有效减小多径效应。
采用智能天线技术的主要目的是为了更有效地对抗移动通信信道,而时分、码分多址系统的信道传输环境从本质上讲是一样的,所以除了具体算法上的差异外,智能天线可广泛应用于各种时分、码分多址系统,包括已商用的第二代系统,即是一种广泛适用的系统。
智能天线另一个可能的用途是进行紧急呼叫定位,并提供更高的定位精度,因为在获得可用于定位的时延、强度等信息的同时,它还可获得波达角信息。
智能天线可以明显改善无线通信系统的性能,提高系统的容量。具体体现在下列方面:
提高频谱利用率。采用智能天线技术代替普通天线,提高小区内频谱复用率,可以在不新建或尽量少建基站的基础上增加系统容量,降低运营商成本。
迅速解决稠密市区容量瓶颈。未来的智能天线应能允许任一无线信道与任一波束配对,这样就可按需分配信道,保证呼叫阻塞严重的地区获得较多信道资源,等效于增加了此类地区的无线网络容量。
抑制干扰信号。智能天线对来自各个方向的波束进行空间滤波。它通过对各天线元的激励进行调整,优化天线阵列方向图,将零点对准干扰方向,大大提高阵列的输出信干比,改善了系统质量,提高了系统可靠性。对于软容量的CDMA系统,信干比的提高还意味着系统容量的提高。
抗衰落。高频无线通信的主要问题是信号的衰落,普通全向天线或定向天线都会因衰落使信号失真较大。如果采用智能天线控制接收方向,自适应地构成波束的方向性,可以使得延迟波方向的增益最小,降低信号衰落的影响。智能天线还可用于分集,减少衰落。
实现移动台定位。采用智能天线的基站可以获得接收信号的空间特征矩阵,由此获得信号的功率估值和到达方向。通过此方法,用两个基站就可将用户终端定位到一个较小区域。由于目前蜂窝移动通信系统只能确定移动台所处的小区,因此移动台定位的实现可以使许多与位置有关的新业务得以方便地推出,而发展新业务是目前移动运营商提升ARPU值、加强自身竞争力的必然手段。