微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 测试测量 > Labview > 图像滤波处理程序

图像滤波处理程序

时间:10-02 整理:3721RD 点击:
有没有大神会做图像滤波处理程序的?帮忙指导一下吧

10种简单的数字滤波算法(C语言源程序)
单片机利用软件抗干扰的几种滤波方法:
1、限幅滤波法(又称程序判断滤波法)
    A、方法:
        根据经验判断,确定两次采样允许的最大偏差值(设为A)
        每次检测到新值时判断:
        如果本次值与上次值之差 A,则本次值无效,放弃本次值,用上次值代替本次值
    B、优点:
        能有效克服因偶然因素引起的脉冲干扰
    C、缺点
        无法抑制那种周期性的干扰
        平滑度差
   
2、中位值滤波法
    A、方法:
        连续采样N次(N取奇数)
        把N次采样值按大小排列
        取中间值为本次有效值
    B、优点:
        能有效克服因偶然因素引起的波动干扰
        对温度、液位的变化缓慢的被测参数有良好的滤波效果
    C、缺点:
        对流量、速度等快速变化的参数不宜
3、算术平均滤波法
    A、方法:
        连续取N个采样值进行算术平均运算
        N值较大时:信号平滑度较高,但灵敏度较低
        N值较小时:信号平滑度较低,但灵敏度较高
        N值的选取:一般流量,N=12;压力:N=4
    B、优点:
        适用于对一般具有随机干扰的信号进行滤波
        这样信号的特点是有一个平均值,信号在某一数值范围附近上下波动
    C、缺点:
        对于测量速度较慢或要求数据计算速度较快的实时控制不适用
        比较浪费RAM
        
4、递推平均滤波法(又称滑动平均滤波法)
    A、方法:
        把连续取N个采样值看成一个队列
        队列的长度固定为N
        每次采样到一个新数据放入队尾,并扔掉原来队首的一次数据.(先进先出原则)
        把队列中的N个数据进行算术平均运算,就可获得新的滤波结果
        N值的选取:流量,N=12;压力:N=4;液面,N=4~12;温度,N=1~4
    B、优点:
        对周期性干扰有良好的抑制作用,平滑度高
        适用于高频振荡的系统   
    C、缺点:
        灵敏度低
        对偶然出现的脉冲性干扰的抑制作用较差
        不易消除由于脉冲干扰所引起的采样值偏差
        不适用于脉冲干扰比较严重的场合
        比较浪费RAM
        
5、中位值平均滤波法(又称防脉冲干扰平均滤波法)
    A、方法:
        相当于“中位值滤波法”+“算术平均滤波法”
        连续采样N个数据,去掉一个最大值和一个最小值
        然后计算N-2个数据的算术平均值
        N值的选取:3~14
    B、优点:
        融合了两种滤波法的优点
        对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
    C、缺点:
        测量速度较慢,和算术平均滤波法一样
        比较浪费RAM

6、限幅平均滤波法
    A、方法:
        相当于“限幅滤波法”+“递推平均滤波法”
        每次采样到的新数据先进行限幅处理,
        再送入队列进行递推平均滤波处理
    B、优点:
        融合了两种滤波法的优点
        对于偶然出现的脉冲性干扰,可消除由于脉冲干扰所引起的采样值偏差
    C、缺点:
        比较浪费RAM
7、一阶滞后滤波法
    A、方法:
        取a=0~1
        本次滤波结果=(1-a)*本次采样值+a*上次滤波结果
    B、优点:
        对周期性干扰具有良好的抑制作用
        适用于波动频率较高的场合
    C、缺点:
        相位滞后,灵敏度低
        滞后程度取决于a值大小
        不能消除滤波频率高于采样频率的1/2的干扰信号
        
8、加权递推平均滤波法
    A、方法:
        是对递推平均滤波法的改进,即不同时刻的数据加以不同的权
        通常是,越接近现时刻的数据,权取得越大。
        给予新采样值的权系数越大,则灵敏度越高,但信号平滑度越低
    B、优点:
        适用于有较大纯滞后时间常数的对象
        和采样周期较短的系统
    C、缺点:
        对于纯滞后时间常数较小,采样周期较长,变化缓慢的信号
        不能迅速反应系统当前所受干扰的严重程度,滤波效果差
9、消抖滤波法
    A、方法:
        设置一个滤波计数器
        将每次采样值与当前有效值比较:
        如果采样值=当前有效值,则计数器清零
        如果采样值 当前有效值,则计数器+1,并判断计数器是否>=上限N(溢出)
            如果计数器溢出,则将本次值替换当前有效值,并清计数器
    B、优点:
        对于变化缓慢的被测参数有较好的滤波效果,
        可避免在临界值附近控制器的反复开/关跳动或显示器上数值抖动
    C、缺点:
        对于快速变化的参数不宜
        如果在计数器溢出的那一次采样到的值恰好是干扰值,则会将干扰值当作有效值导
入系统
10、限幅消抖滤波法
    A、方法:
        相当于“限幅滤波法”+“消抖滤波法”
        先限幅,后消抖
    B、优点:
        继承了“限幅”和“消抖”的优点
        改进了“消抖滤波法”中的某些缺陷,避免将干扰值导入系统
    C、缺点:
        对于快速变化的参数不宜
假定从8位AD中读取数据(如果是更高位的AD可定义数据类型为int),子程序为get_ad();  
1、限副滤波
/* A值可根据实际情况调整
value为有效值,new_value为当前采样值
滤波程序返回有效的实际值 */
#define A 10
char value;
char filter()
{
        char new_value;
        new_value = get_ad();
        if ( ( new_value - value > A ) || ( value - new_value > A )
        return value;
        return new_value;
}
2、中位值滤波法
/* N值可根据实际情况调整
排序采用冒泡法*/
#define N 11
char filter()
{
        char value_buf[N];
        char count,i,j,temp;
        for ( count=0;count value_buf[i+1] )
                        {
                                temp = value_buf;
                                value_buf = value_buf[i+1];
                                value_buf[i+1] = temp;
                        }
                }
        }
return value_buf[(N-1)/2];
}
3、算术平均滤波法
/*
*/
#define N 12
char filter()
{
        int sum = 0;
        for ( count=0;count value_buf[i+1] )
                        {
                                temp = value_buf;
                                value_buf = value_buf[i+1];
                                value_buf[i+1] = temp;
                        }
                }
        }
        for(count=1;count 2 )
    {
        for ( i=0;i MaxVal)
            {
                MaxVal = Pointer[i];
            }
            if ( Pointer[i] =N) return new_value;
                delay();
                new_value = get_ad();
        }
        return value;
}
10、限幅消抖滤波法
/*
*/
略 参考子程序1、9

嗯嗯,谢谢

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top