运算放大器的发展趋势
时间:10-02
整理:3721RD
点击:
从第一颗运算放大器IC问世到现在,运算放大器技术已经在半导体制造工艺和电路设计两方面取得了巨大进展。在大约40年的发展过程中,IC制造商们利用上述先进技术设计出了近乎“完美”的放大器。虽然什么是理想放大器很难有一个精确定义,但它却为模拟设计工程师提供了一个目标。理想放大器应该无噪声、具有无穷大增益、无穷大输入阻抗、零偏置电流以及零失调电压,它还应该不受封装尺寸限制,不占用空间。上述这些,都是许多教科书为了得到简单的传递函数而做出的种种假设。
为什么有如此多的选择?
实际上,选择放大器在今天是一个相当复杂的事情。其部分原因在于,系统设计要求的多样性,以及电路配置的多重性,不同的放大器产品根据应用领域的不同需要在性能上进行折衷。进行放大器设计的工程师在不断推动技术发展,而在可预见的未来,这种趋势还将继续演进。目前,ADI等制造公司,正在将新的工艺技术、新的封装技术,以及新的制造能力进行结合,制造今天许多挑战性应用所需的“完美”型放大器。每一种应用都是一个不同技术指标的组合体,所以其使用的放大器数量也将不断增加才能满足其要求。与原来的运算放大器相比,今天的产品扩展了带宽、降低了电源电压、减小了功耗电流、节省了PCB面积而且降低了成本。随着对信噪比(SNR)要求的增加,以及实际信号处理在家用电器和工业设备中得到越来越广泛的应用,这种趋势还将继续发展。
今天的制造工艺和电路设计
让我们对需要外部补偿和外部失调调整元件的放大器(比如LM709)做一简单的历史性回顾。这些产品中的大多数,都是采用双极型工艺在两英寸晶圆上制造而成;它们仅提供双列直插(DIP)封装和TO-99金属圆壳封装,并且其主要应用领域是工业仪器仪表;其低功耗特性意味着从±15 V电源中吸取几毫安(mA)电流;制造商给出的技术指标只强调其直流(DC)参数;这些产品合格率低,但是价格很高。
在当今的精密放大器领域,微弱信号设计工程师关注一些重要因素,例如低电源电流、低失调电压、低噪声、低偏置电流等。最新放大器采用创新设计和工艺,能够提供不断超越用户期望的性能。设计工程师使用电路和产品测试技术(例如自稳零、Digitrim数字微调、熔丝熔断和激光微调电阻器等方法),促进优化每一项技术指标,从而设计出几项具体参数接近理想指标的放大器。像AD8628这样的放大器,已经将其失调电压指标优化到几微伏(μV)。
制造商在工艺技术的各个方面都取得了重大进步。这些进步允许放大器设计工程师充分发挥每种工艺的性能和功能。CMOS工艺已经从先进技术(受到数字微处理器推动)的进步中获益,模拟放大器设计工程师们也早利用其获得了低成本下的高性能。过去,超高性能放大器产品都需要利用双极型工艺进行设计;现在,模拟放大器设计工程师能够克服CMOS工艺电压噪声较高的缺点,兼备低噪声和超低偏置电流(可能来自氧化物绝缘栅极)。为达到这一目的,ADI公司已经开发了专有的iCMOS工业CMOS工艺,并于不久前推出了具有最低噪声(4.5 nV/√Hz)的CMOS放大器AD8651,和拥有超低电源电流(每放大器1微安)的AD8500。
但是,目前许多高性能运算放大器仍然使用双极型工艺,因为这种工艺可以提供明显的模拟设计优势,而且几乎不需要进行性能折衷。各种新的工业双极型工艺,例如ADI公司的iPolar沟道隔离工艺技术,通过先进的制造工艺和结型场效应管(JFET)等器件,显著减小了管芯尺寸。这些在制造工艺上的新进展,允许放大器设计工程师开发出具有无与伦比性能参数的产品。其中一个例子是AD8599,它将宽带噪声减小到几乎测不到的程度(1 nV/√Hz)。
在高速放大器领域,超快速制造工艺(ultra-fast processes)允许ADA4899-1等器件具有310 μV/s的转换速率和250 MHz的带宽。
虽然管芯尺寸在不断减小,但与此同时放大器性能却在尽一切可能进行提高,这就使得我们能够能放大器封装尺寸缩小到令人难以置信的程度,缩小到甚至裸眼观察不到的水平。
未来的发展趋势
对于那些需要采用AA电池(5号电池)或镍金属氢化物(NiMH)电池供电的应用而言,尺寸和功耗都是首要关注的问题。现在,放大器的工作电源电压已经降低到1.8 V,并且仍然在减小。当完全需要精密、低电压工作和低功耗时,AD8500(1μA电源电流)是最佳选择。只需单节电池供电,精密放大器就能工作。为了节省功耗,许多放大器产品还需要智能关断电路。
将其它功能与放大器集成在一起也可以降低系统误差。例如,AD8555可为传感器信号调理应用提供许多前所未有的优势,例如增益调整、失调调整和故障检测电路。集成度的进一步增加可以包括线性度校正、频率成形或其它功能,以便开发更多完整的解决方案。
制造工艺和设计趋势将继续为用户提供更低价格、更小封装且提高指标的器件,R-R性能和功耗等现存问题,将继续得到改进,而放大器则会更接近于其“理想”状态。
工艺和封装技术的不断进步,能够在更小的封装内继续提高集成度,从而增加功能并提高性能。放大器还要集成其它功能,当然,这也会是在非常小的封装内。各种封装材料的进步,还有望实现集成度更高的参数所规定的技术指标。
未来提供的放大器产品,也应该更易于设计到系统中。而制造商们,也将把更多的精力集中在放大器的设计工具上。传统的PSPICE模型将被更为精准的模型所取代,后者包括了更多的放大器参数。附加的工具有助于分析放大器的稳定性、DC误差和AC误差。设计工程师使用SPICE模型模拟已选放大器的通用性能,从而可以选择元件、快速配置电路、施加信号并且在网上评估放大器的通用性能。现在用户可以使用在线参数评估工具,快速有效地完成实时仿真,并且检测出各种参数和体系结构中存在的潜在问题。制造商将开发出用于网站的向导工具,为设计工程师的问题提供每天24小时在线的专家指导。
作者: Reza Moghimi
精密信号处理部应用工程经理
Craig Wilson
精密信号处理部技术专家
美国模拟器件公司
为什么有如此多的选择?
实际上,选择放大器在今天是一个相当复杂的事情。其部分原因在于,系统设计要求的多样性,以及电路配置的多重性,不同的放大器产品根据应用领域的不同需要在性能上进行折衷。进行放大器设计的工程师在不断推动技术发展,而在可预见的未来,这种趋势还将继续演进。目前,ADI等制造公司,正在将新的工艺技术、新的封装技术,以及新的制造能力进行结合,制造今天许多挑战性应用所需的“完美”型放大器。每一种应用都是一个不同技术指标的组合体,所以其使用的放大器数量也将不断增加才能满足其要求。与原来的运算放大器相比,今天的产品扩展了带宽、降低了电源电压、减小了功耗电流、节省了PCB面积而且降低了成本。随着对信噪比(SNR)要求的增加,以及实际信号处理在家用电器和工业设备中得到越来越广泛的应用,这种趋势还将继续发展。
今天的制造工艺和电路设计
让我们对需要外部补偿和外部失调调整元件的放大器(比如LM709)做一简单的历史性回顾。这些产品中的大多数,都是采用双极型工艺在两英寸晶圆上制造而成;它们仅提供双列直插(DIP)封装和TO-99金属圆壳封装,并且其主要应用领域是工业仪器仪表;其低功耗特性意味着从±15 V电源中吸取几毫安(mA)电流;制造商给出的技术指标只强调其直流(DC)参数;这些产品合格率低,但是价格很高。
在当今的精密放大器领域,微弱信号设计工程师关注一些重要因素,例如低电源电流、低失调电压、低噪声、低偏置电流等。最新放大器采用创新设计和工艺,能够提供不断超越用户期望的性能。设计工程师使用电路和产品测试技术(例如自稳零、Digitrim数字微调、熔丝熔断和激光微调电阻器等方法),促进优化每一项技术指标,从而设计出几项具体参数接近理想指标的放大器。像AD8628这样的放大器,已经将其失调电压指标优化到几微伏(μV)。
制造商在工艺技术的各个方面都取得了重大进步。这些进步允许放大器设计工程师充分发挥每种工艺的性能和功能。CMOS工艺已经从先进技术(受到数字微处理器推动)的进步中获益,模拟放大器设计工程师们也早利用其获得了低成本下的高性能。过去,超高性能放大器产品都需要利用双极型工艺进行设计;现在,模拟放大器设计工程师能够克服CMOS工艺电压噪声较高的缺点,兼备低噪声和超低偏置电流(可能来自氧化物绝缘栅极)。为达到这一目的,ADI公司已经开发了专有的iCMOS工业CMOS工艺,并于不久前推出了具有最低噪声(4.5 nV/√Hz)的CMOS放大器AD8651,和拥有超低电源电流(每放大器1微安)的AD8500。
但是,目前许多高性能运算放大器仍然使用双极型工艺,因为这种工艺可以提供明显的模拟设计优势,而且几乎不需要进行性能折衷。各种新的工业双极型工艺,例如ADI公司的iPolar沟道隔离工艺技术,通过先进的制造工艺和结型场效应管(JFET)等器件,显著减小了管芯尺寸。这些在制造工艺上的新进展,允许放大器设计工程师开发出具有无与伦比性能参数的产品。其中一个例子是AD8599,它将宽带噪声减小到几乎测不到的程度(1 nV/√Hz)。
在高速放大器领域,超快速制造工艺(ultra-fast processes)允许ADA4899-1等器件具有310 μV/s的转换速率和250 MHz的带宽。
虽然管芯尺寸在不断减小,但与此同时放大器性能却在尽一切可能进行提高,这就使得我们能够能放大器封装尺寸缩小到令人难以置信的程度,缩小到甚至裸眼观察不到的水平。
未来的发展趋势
对于那些需要采用AA电池(5号电池)或镍金属氢化物(NiMH)电池供电的应用而言,尺寸和功耗都是首要关注的问题。现在,放大器的工作电源电压已经降低到1.8 V,并且仍然在减小。当完全需要精密、低电压工作和低功耗时,AD8500(1μA电源电流)是最佳选择。只需单节电池供电,精密放大器就能工作。为了节省功耗,许多放大器产品还需要智能关断电路。
将其它功能与放大器集成在一起也可以降低系统误差。例如,AD8555可为传感器信号调理应用提供许多前所未有的优势,例如增益调整、失调调整和故障检测电路。集成度的进一步增加可以包括线性度校正、频率成形或其它功能,以便开发更多完整的解决方案。
制造工艺和设计趋势将继续为用户提供更低价格、更小封装且提高指标的器件,R-R性能和功耗等现存问题,将继续得到改进,而放大器则会更接近于其“理想”状态。
工艺和封装技术的不断进步,能够在更小的封装内继续提高集成度,从而增加功能并提高性能。放大器还要集成其它功能,当然,这也会是在非常小的封装内。各种封装材料的进步,还有望实现集成度更高的参数所规定的技术指标。
未来提供的放大器产品,也应该更易于设计到系统中。而制造商们,也将把更多的精力集中在放大器的设计工具上。传统的PSPICE模型将被更为精准的模型所取代,后者包括了更多的放大器参数。附加的工具有助于分析放大器的稳定性、DC误差和AC误差。设计工程师使用SPICE模型模拟已选放大器的通用性能,从而可以选择元件、快速配置电路、施加信号并且在网上评估放大器的通用性能。现在用户可以使用在线参数评估工具,快速有效地完成实时仿真,并且检测出各种参数和体系结构中存在的潜在问题。制造商将开发出用于网站的向导工具,为设计工程师的问题提供每天24小时在线的专家指导。
作者: Reza Moghimi
精密信号处理部应用工程经理
Craig Wilson
精密信号处理部技术专家
美国模拟器件公司
* 什么是电路设计?
电路(电子线路)是由电气设备和元器件按一定方式联接起来,为电流流通提供了路径的总体,也叫电子网路。电路的大小可以相差很大,小到硅片上的集成电路,大到输电网。根据所处理信号的不同,电子电路可以分为模拟电路和数字电路。 电路设计是指通过一定规则和方法设计出的电路。
* 什么是运算放大器?
运算放大器(简称“运放”)是调节和放大模拟信号的器件,多用于做模拟运算的放大器, 主要的特点是差分输入/单端输出/直流耦合/输入输出工作点都在 0V等特点, 除了功率运放外一般不要求输出大的功率.。常见的应用包括数字示波器和自动测试装置、视频和图像计算机板卡、医疗仪器、电视广播设备、航行器用显示器和航空运输控制系统、汽车传感器、计算机工作站和无线基站等。