微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 微波和射频技术 > 射频综合技术问答 > 大功率集总参数衰减器稳定性分析

大功率集总参数衰减器稳定性分析

时间:10-02 整理:3721RD 点击:
前言
大功率集总参数衰减器是一种常见的射频和微波控制器件,其主要功能之一就是降低射频信号的幅度。在测试和测量中经常会用到衰减器,要说这种器件的使用概率仅次于电缆和连接器也不为过。
通常,无论是生产厂家在出厂检验、用户收货时的验收、或者计量院对衰减器进行校准时,都是采用矢量网络分析仪来进行测量,其主要指标就是输入驻波比和衰减量。这已是实行多年的行业规则。
你是否考虑过这样一个问题:既然衰减器是工作在大功率条件下,而矢量网络分析仪的输出仅为0dBm,那么在这种条件下测得的指标是否真实反应了这个衰减器的性能呢?显然,这是多年来射频工程师都“看得见”的“盲区”。并非大家不愿意进一步研究衰减器的大功率特性,以笔者与同行的交流以及经验来分析,大致有以下两条原因:
1. 这么多年来都是这样用的,即使大功率和小功率测试有点误差,也很难察觉到,没有人对最终测试结果“较真”;
2. 射频大功率的实时测试有点麻烦,不测也罢。
笔者对衰减器的大功率特性进行了一些探讨性的测试,并发现了一些有趣的结果,在此提交给同行们讨论。
为什么要研究衰减器的大功率特性
当一个50W 的大功率信号经过一个衰减量为20dB 的衰减器后,信号被衰减了100 倍,剩下0.5W的信号从出现在输出端,那49.5W 的功率能量去哪了?当然你马上会说,这些射频信号能量被衰减器吸收并转化为热能了,最终通过衰减器的散热片消耗在空气中了(图1)。



完全正确!衰减器在大功率条件下,其表面温度会随着时间的变化逐渐升高(超过70oC),而内部的温度更高(超过200oC)。也就是说,在大功率条件下,器件的物理环境发生了变化,那么器件的性能必然也会随之变化!究竟有多少变化?会不会影响到最终的测试结果呢?这就是本文要探讨的话题。
在本文中,通过实验描述了一个衰减器在大功率条件下性能的变化。
试验方法和结果
试验对象是一个50W,6GHz,30dB 的固定衰减器,我们采用了PM2000LS60 型大功率测试平台进行测试
(图2)。



在图2 中,放大器产生2GHz、47dBm(50W)的连续波功率持续加载到被测衰减器,输入取样电路分别测量输入到被测衰减器的信号47dBm(a1)以及被衰减器反射回来的信号b1;经过被测衰减器的30dB 衰减后,还有约+17dBm(b2)被输出取样电路检测到。
将b2 减去a1,即可得出被测衰减器在大功率状态下的衰减量,而b1 和a1 的比值即为驻波比。

采用这种方法的最大好处就是完全抵消了放大器输出的不稳定性。同时为了保证试验结果的精度,系统中均采用了耐高温的PTFE 介质材料的电缆,并预先进行了归一化校准。
开始测试时,测试系统显示被测衰减器呈现良好的驻波比表现,同时衰减量也十分稳定,只是温度在不断上升。当测试进行到三分钟多时,出现了故障的现象——驻波比从1.15 急剧变大到8、衰减量从30.1dB 急剧变化到34.3dB!(图3)



图3 a) 驻波比的变化




图3 b) 衰减量的变化




图3 c) 表面温度的变化


图3 大功率状态下衰减器特性随时间的变化


测试系统同时观测并记录了三组数据,显而易见,这个衰减器在50W 的功率作用下失效了!
更有意思的现象还在后面,上述大功率试验后,我们用网络分析仪对衰减器重新进行测试,发现其居然是正常的!其驻波约为1.11@2GHz,衰减量约为30.1@2GHz
(图4)。
再次采用大功率测试,又出现了图3 的现象。



图4a) 小功率下的驻波比




图4b) 小功率下的衰减量


图4. 网络分析仪的测试结果


试验结果分析
上述实验结果显示被测衰减器在大功率的持续作用下,其衰减量和驻波比发生了明显变化并失效了,显然这与衰减器内部温度的变化是密切相关的。
但是在小功率条件下又恢复了正常,这种现象的产生机理解释尚有待于对这个衰减器的进一步分析结果。
结束语
关于集总参数衰减器的大功率稳定性评估,并无适合的标准可依,常见的方法是采用直流替代法。但是笔者认为这种方法与被测衰减器的实际使用环境不符。本文中所描述的试验是在真实的使用环境下进行的,更具有实际应用价值。
如果这个衰减器是用在某个测试系统或者通信系统,那么对系统的影响可想而知。

study!

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top