RF半导体工艺知道多少?不懂快来看看!

砷化镓GaAs
半导体材料可以分为元素半导体和化合物半导体两大类,元素半导体指硅、锗单一元素形成的半导体,化合物指砷化镓、磷化铟等化合物形成的半导体。砷化镓的电子迁移速率比硅高5.7倍,非常适合用于高频电路。砷化镓组件在高频、高功率、高效率、低噪声指数的电气特性均远超过硅组件,空乏型砷化镓场效晶体管(MESFET)或高电子迁移率晶体管(HEMT/PHEMT),在3V电压操作下可以有80%的功率增加效率(PAE:poweraddedefficiency),非常的适用于高层(hightier)的无线通讯中长距离、长通信时间的需求。 砷化镓元件因电子迁移率比硅高很多,因此采用特殊的工艺,早期为MESFET金属半导体场效应晶体管,后演变为HEMT(高速电子迁移率晶体管),pHEMT(介面应变式高电子迁移电晶体)目前则为HBT(异质接面双载子晶体管)。异质双极晶体管(HBT)是无需负电源的砷化镓组件,其功率密度(powerdensity)、电流推动能力(currentdrivecapability)与线性度(linearity)均超过FET,适合设计高功率、高效率、高线性度的微波放大器,HBT为最佳组件的选择。而HBT组件在相位噪声,高gm、高功率密度、崩溃电压与线性度上占优势,另外它可以单电源操作,因而简化电路设计及次系统实现的难度,十分适合于射频及中频收发模块的研制,特别是微波信号源与高线性放大器等电路。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4-6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。

SiGe
1980年代IBM为改进Si材料而加入Ge,以便增加电子流的速度,减少耗能及改进功能,却意外成功的结合了Si与Ge。而自98年IBM宣布SiGe迈入量产化阶段后,近两、三年来,SiGe已成了最被重视的无线通信IC制程技术之一。
依材料特性来看,SiGe高频特性良好,材料安全性佳,导热性好,而且制程成熟、整合度高,具成本较低之优势,换言之,SiGe不但可以直接利用半导体现有200mm晶圆制程,达到高集成度,据以创造经济规模,还有媲美GaAs的高速特性。随着近来IDM大厂的投入,SiGe技术已逐步在截止频率(fT)与击穿电压(Breakdownvoltage)过低等问题获得改善而日趋实用。
目前,这项由IBM所开发出来的制程技术已整合了高效能的SiGeHBT(HeterojunctionBipolarTransistor)3.3V及0.5μm的CMOS技术,可以利用主动或被动组件,从事模拟、RF及混合信号方面的配置应用。 SiGe既拥有硅工艺的集成度、良率和成本优势,又具备第3到第5类半导体(如砷化镓(GaAs)和磷化铟(InP))在速度方面的优点。只要增加金属和介质叠层来降低寄生电容和电感,就可以采用SiGe半导体技术集成高质量无源部件。此外,通过控制锗掺杂还可设计器件随温度的行为变化。SiGeBiCMOS工艺技术几乎与硅半导体超大规模集成电路(VLSI)行业中的所有新技术兼容,包括绝缘体硅(SOI)技术和沟道隔离技术。 不过硅锗要想取代砷化镓的地位还需要继续在击穿电压、截止频率、功率消耗方面努力。

Ultra CMOS SOI的一个特殊子集是蓝宝石上硅工艺,在该行业中通常称为Ultra CMOS。蓝宝石本质上是一种理想的绝缘体,衬底下的寄生电容的插入损耗高、隔离度低。Ultra CMOS能制作很大的RFFET,对厚度为150~225μm的正常衬底,几乎不存在寄生电容。晶体管采用介质隔离来提高抗闩锁能力和隔离度。为了达到完全的耗尽工作,硅层极薄至1000A。硅层如此之薄,以致消除了器件的体端,使它成为真正的三端器件。目前,UltraCMOS是在标准6寸工艺设备上生产的,8寸生产线亦已试制成功。示范成品率可与其它CMOS工艺相媲美。 尽管单个开关器件的BVDSS相对低些,但将多个FET串联堆叠仍能承爱高电压。为了确保电压在器件堆上的合理分压,FET至衬底间的寄生电容与FET的源与漏间寄生电容相比应忽略不计。当器件外围达到毫米级使总电阻较低时,要保证电压的合理分压,真正的绝缘衬底是必不可少的。 Peregrine公司拥有此领域的主要专利,采用UltraCMOS工艺将高Q值电感和电容器集成在一起也很容易。线卷Q值在微波频率下能达到50。超快速数字电路也能直接集成到同一个RF芯片上。该公司推出PE4272和PE4273宽带开关例证了UltraCMOS的用处(见图)。这两个75Ω器件设计用于数字电视、PCTV、卫星直播电视机顶盒和其它一些精心挑选的基础设施开关。采用单极双掷格式,它们是PIN二极管开关的很好的替代品,它们可在改善整体性能的同时大大减少了元器件的数量。 两个器件1GHz时的插入耗损仅为0.5dB、P1dB压缩率为32dBm、绝缘度在1GHz时高达44dB。两种器件在3V时静态电流仅为8μA、ESD高达2kV。PE4273采用6脚SC-70封装,绝缘值为35dB。PE4272采用8脚MSOP封装,绝缘值为44dB。10K订购量时,PE4272和PE4273的价格分别为0.45和0.30美元。 和Peregrine公司有合作关系的日本冲电气也开发了类似产品,冲电气称之为SOS技术,SOS技术是以“UTSi”为基础开发的技术。“UTSi”技术是由在2003年1月与冲电气建立合作关系的美国派更半导体公司(PeregrineSemiconductorCorp.)开发的。在蓝宝石底板上形成单晶硅薄膜,然后再利用CMOS工艺形成电路。作为采用具有良好绝缘性的蓝宝石的SOS底板,与硅底板和SOI(绝缘体上硅)底板相比,能够降低在底板上形成的电路耗电量。冲电气开发的RF开关的耗电电流仅为15μA(电源电压为2.5~3V),与使用GaAs材料的现有RF开关相比,耗电量降到了约1/5。
Si BiCMOS 以硅为基材的集成电路共有SiBJT(Si-BipolarJunctionTransistor)、SiCMOS、与结合Bipolar与CMOS特性的SiBiCMOS(SiBipolarComplementaryMetalOxideSemiconductor)等类。由于硅是当前半导体产业应用最为成熟的材料,因此,不论在产量或价格方面都极具优势。传统上以硅来制作的晶体管多采用BJT或CMOS,不过,由于硅材料没有半绝缘基板,再加上组件本身的增益较低,若要应用在高频段操作的无线通信IC制造,则需进一步提升其高频电性,除了要改善材料结构来提高组件的fT,还必须藉助沟槽隔离等制程以提高电路间的隔离度与Q值,如此一来,其制程将会更为复杂,且不良率与成本也将大幅提高。 因此,目前多以具有低噪声、电子移动速度快、且集成度高的SiBiCMOS制程为主。而主要的应用则以中频模块或低层的射频模块为主,至于对于低噪声放大器、功率放大器与开关器等射频前端组件的制造仍力有未逮。
氮化镓GaN
氮化镓并非革命性的晶体管技术,这种新兴技术逐渐用于替代横向扩散金属氧化物硅半导体(Si LDMOS)和砷化镓(GaAs)晶体管技术以及某些特定应用中的真空管。
与现有技术相比,氮化镓(GaN)的优势在于更高的漏极效率、更大的带宽、更高的击穿电压和更高的结温操作,这些特点经常作为推动其批量生产的重要因素,但在价格、可用性和器件成熟度方面还需加以综合考量。

