从电路到电磁场
[size=13.63636302947998px] 2013年11月在msOS QQ群中即兴讲解了电磁场,之后整理成博客“看得懂的电磁场理论”在相关电子门户网站发表,获得很多网友好评,也有不少网友提出一些质疑,更有一些专门加入msOS群中参与交流讨论。
[size=13.63636302947998px] “看得懂的电磁场理论”还存在一些问题,本人当时也没有理解透彻,尤其是电磁场理论如何解释低频甚至是稳恒直流电路,自己似乎知道,但又讲不清楚,很是苦恼,所以当时是回避了这些问题,长期以来这些苦恼时时让我去思考,可以说从接触电磁场到今天有十多年时间,经常在思考这个东西,想着从一些简单的,显而易见的常识入手感性认知,而不是通过数学去死记,因为数学同样的回避了太多问题,不够形象,也或者说,我们本身对一些基础概念的认知就出错了,被经典电路概念所困住了导致似是而非。
[size=13.63636302947998px] 发表之后到现在快半年了,这半年来经常跟网友沟通讨论,也请教了一些前辈,尤其是当面请教了兰州大学微波、天线专家张金生教授,张教授是老一辈无线电物理专家,长期从事微波、天线研究,张教授亲自看了上篇文章,基本上认同,但也指出了一些缺陷,同时纠正了一个基本概念,而这个概念的纠正直接导致今天的这篇文章出现。
[size=13.63636302947998px] 今天虽然说理解的更多更准确了,但不敢说都理解对了,只能说错误更少了一些,还请大家继续斧正。
直流电
[size=13.63636302947998px] 长期以来,我们了解电路是从回路开始的,以直流稳恒回路为例,电池把化学能转换成电能,电能通过导线传递到负载上,如下图:
[size=13.63636302947998px]
[size=13.63636302947998px] 电池中,化学能把电子从一极移向另一极,缺少电子一极为正极,获得电子一极为负极,两端形成了电势差(Vdc),也就存在了电场,方向从正极指向负极,化学能要驱动电子克服这个电场从正极移动到负极,电池内部的电流移动跟电场方向相反。
[size=13.63636302947998px] 传统对于电子的理解是带负电荷量为e的一个实体,往往指起本身,但是,这个理解是不够准确的,电子除了本身,还应该包括它激发的负电场,电子与电子等作用,根本上是它们各自激发的电场与电场的作用。举个例子一块砖头从天空加速掉下来,是这块砖头激发的引力场与地球的引力场之间的作用导致砖头掉下来的,电子也是这个概念。所以对电子的认知,以前都是基于它的实体认知,现在更多的可以基于它激发的电场来认知,两者是等价的,但基于电场的认知,有助于理解高频、电磁场。
[size=13.63636302947998px] 当用导线连接电池与负载构成一个电路回路,假设为理想导线,内阻为0,则导线跟所连接的正负极等电势,于是在导线之间也形成了电场,负载两端也有这个电势差(Vdc),所以负载内部也有电场。
[size=13.63636302947998px] 很多人可能对于导线之间的电场无法理解,因为以前很少有提到的,所以往往无视,这是重点指出的。我们换一种思维想这个问题,把正负极之间的两根导线看作是一个电容,这个电容两端接在电源上,那么就很好理解了,这个电容被充电了,正负两端就集聚了正负电荷,两极之间就充满了电场,红色矩阵表示正极导线,绿色矩阵表示负极导线,里面的颜色表示内部的电荷分布,要靠近两电极边缘,这样保证导体整个形成等势体,理想导体内部是没有电场的,因为是等势体。
[size=13.63636302947998px]
[size=13.63636302947998px]
就电池单独来讲,刚开始时,电池两端电压为0V,化学能搬移电子从正极到负极,当两极电子集聚或减少的的越来越多的时候,电势差越来越大,以镍氢电池为例,当达到1.2V时,就不再增长,因为这个化学能中Ni转变为Ni离子最大的电动势就是1.2V。所以当电极两端达到1.2V之后,两极电场就阻值了化学能继续反应。
[size=13.63636302947998px]
当电池两端连接了理想导线和负载之后,理想导线要跟两极等电势,所以从电极上获得电荷,跟正极接的导线失去电子获得正电荷,负极接的导线获得电子也就是获得负电荷,这样两导线因为获得不同电荷,之间形成电压差,也就是电池电压,这个电压加在负载R上,对负载R内的自由电子做功,碰撞负载R内的原子发热,类似于电子管里的电子从阴极飞到阳极。之后通过导线回到电池内部,被化学能克服电场重新搬移到正极开始下一轮的循环。
[size=13.63636302947998px]
这儿反复强调,理想导体是等电势,所以内部没有电场。电子在理想导体中移动因为没有受到电场力的作用,所以整体均匀上讲,是匀速运动的,这个电子也可以分布在导体内任何位置移动。
[size=13.63636302947998px]
这里举一个形象的实际例子,吊车把地面的石头举起来,石头克服地球引力(等价于电池),之后平行搬移到另外一个地方(理想导线),放下石头(对负载做功发热),再把它平移回来(理想导线)。直流电模型中,整个回路的电子都可以理解为匀速移动的,两根导线中因为不受力,所以匀速,电池中,化学能抵消电场力,所以匀速,负载中,电子与原子的碰撞发热与电场力抵消,所以匀速。
[size=13.63636302947998px]
理想导体,关键在于“导”字,“导”就是通的意思。通的,就是没有电压差,也就是没有电场,所以不存在加速过程,只是匀速平移。很多人认为,导体中有电流移动,所以就有电压,其实,均匀的电流移动,是可以不需要电压的,这个跟物理中的物体做匀速运动,不需要外力是一个道理。
[size=13.63636302947998px]
理想导体因为是完全导通没有电压差的,理论上讲是可以通任意电流大小电流的。最终在导体中的电流大小,取决于负载上流过的电流大小。
[size=13.63636302947998px]
实际中的导体都不是理想导体,都是有内阻的,所以会有一定的沿着导线方向的电压差,所以会发热,但理想导体或者超导体是绝对没有沿着导体方向的电压差的。
[size=13.63636302947998px]
对于一个闭环的超导体回路来说,因为内阻为零,有一定长度,可以完全理解为一个纯电感,当变化的磁场通过超导体回路会产生涡电场,也就是有一个电动势加在闭环超导体中,这个时候,因为理想导体内部不能有电场,所以这个电场由纯电感感应的逆电动势抵消来保持理想导体内部无电场,这等效于给这个纯电感充电,准确的讲是充磁(感谢网友“大宝小莉啊”纠正),电流按照电感公式U = L* I / T变化。
[size=13.63636302947998px]
我们可以来一个总结:
[size=13.63636302947998px]
1、 理想导体,因为是等电势,所以内部是没有电场的。
[size=13.63636302947998px]
2、 有电压差,就能产生电场:E = U / D,E为电场强度,U为电压差,D为距离。
[size=13.63636302947998px]
3、 电流,其实就是磁场的另外一种表现形式,电流与磁场如同电子如电场的关系。
[size=13.63636302947998px]
我们很多自小就接触电子,因为那个时候接受事物的能力有限,所以接触的一些概念,往往是比较形象的,比如把电路理解为一个回路,电流在这个回路里流,大家很容易想象着,电场方向也是跟电流方向一致的。其实,在导体里,电场方向是否跟电流一致,书本上其实是回避了的,但这个是我们自己的潜意识形成的,而这一点却严重的制约了后来对电磁场的理解。
[size=13.63636302947998px]
接下来分析一下常规导线里面的电场与外部电场的关系,看看是否是我们原先所认知的那样。我们以家庭常用的220VAC交流电源线为例,红黑双根分别为火线和地线,铜线截面积为0.5平方毫米,线中心与线中心之间间距4mm,单根导线每米电阻为0.1欧姆,我们做一些初略的计算分析线内外的电场情况,设电压为220V。
[size=13.63636302947998px]
线外电场:E = 220伏 / 0.04米 = 5500伏/米。这个是平板电容的计算方式,导线与导线之间的电场,要略低于这个值,估算降低一个数量级为550伏/米。(感谢网友“haulegend”纠正)
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
线内电场:E = 0.1欧姆 * N安培 / 1米 = 0.1N伏/米
[size=13.63636302947998px]
这个N根据实际电流大小决定,若为1安培,则导线内的电场只有0.1伏/米,远远小于线外的电场强度550伏/米,可以忽略不计。
[size=13.63636302947998px]
[size=13.63636302947998px]
三条常识
[size=13.63636302947998px]1、 我们知道,物质、能量的传递都不可以瞬间进行的,而已知的最高速度,就是光速,光也是电磁波,也就是说,电磁波的速度是最高的,那就是C = 300 000 000米/秒。
[size=13.63636302947998px]2、 电路、电磁场是可以统一的,电路是电磁场理论在低频小回路中的一个近似。这个前人已经证明,我们把结论直接拿来用。
[size=13.63636302947998px]3、 电路回路深入人心,回路概念不能随便丢弃。
交流信号
[size=13.63636302947998px] 日常交流电是50Hz,虽然只有50Hz,但也是基于电磁场理论的,我们先推算一下它的波长。
[size=13.63636302947998px] 波长 = 300 000 000 / 50 = 6 000 000米 = 6000千米。
[size=13.63636302947998px]这也就是说,我们先承认50Hz的交流电是电磁波的话,那么它的波长是6000km,因为这个尺度太大了,远远超出了我们实际常用的尺寸,所以哪怕是电磁场,我们也感觉不到。这如同人相对于地球非常渺小,视野非常有限,发现不了地球到底是圆的,还是平的,一个道理。
[size=13.63636302947998px] 假如这个频率提高到300MHz,也就是一秒钟变化300百万次。
[size=13.63636302947998px] 波长 = 300 000 000 / 300 000 000 = 1米。
[size=13.63636302947998px] 而今天,我们的射频,比如手机频率都在900MHz或者1800MHz,WIFI等都工作在2400MHz上,所以产生的波长,跟我们的实际器件、回路尺寸都很接近,我们不得不考虑电磁场理论对我们的影响了。
[size=13.63636302947998px] 一个波长范围内,表征了一个完整的信号变化,理想情况下电压、电流按正弦波规律变化,对应的电场和磁场也是按这个变化。以300MHz信号为例,波长是1米,在一个长回路中,每隔1米位置信号电压是完全相同的,每隔0.5米位置信号电压是完全相反的。当前高速PCB布板,比如DDR2内存就工作在这个200~300MHz频率附近(数字信号可以分解为各个正弦波的叠加,这个例子对正弦波和方波都试用,信号不考虑反射条件下),考虑到PCB板介电常数是3.9~4.2,取整数为4,那么波长缩短为4倍,只有1 / 4 = 0.25米,也就是波长只有25厘米。DDR2地址、数据线有很多根,假如因为布线条件决定引起各根地址或者数据线之间长短不一,比如差12.5cm,数据就完全相反了,0变成了1,1变成了0。哪怕差1cm,也引起了1 / 25 * 360 = 14.4度的相位差。这也严重的影响了时钟信号的采样判断点。所以在DDR2等多地址、数据线的条件下,无法忽视因为信号电磁场传播延时引起的数据相位差问题了。
[size=13.63636302947998px]
[size=13.63636302947998px]
1 / 4周期
[size=13.63636302947998px] 我们还是回到开头的直流电模型中,设导线单根长度0.25米,电压为Vdc,突然,我们把电压从Vdc降为0V,这个变化规则是按正弦波规则从最大值Vdc降为0,为了简化模型,设这个正弦波的频率为300MHz,等价于初始相位为90度,也就是最大值,之后按300MHz频率的变化速度变化到180度的过程。这就是1/4周期,简写为(1/4T),这样导线长度就等价于1/4波长了,如下图:
[size=13.63636302947998px]
[size=13.63636302947998px]
因为电源突然电压按300Mhz正弦波规则下降为0V,靠近电源的地方被牵引,电压降低,对应的电场就变小,越靠近的越小。相应的,因为左边电源电压降低,对左边的导线产生影响,也就是有一个负电压,但是导线内部是不允许有电压的,这个时候,必须要降低左边的电流,也就是改变左边导线磁场产生一个反向电动势来抵消这个电压差,越靠近左边电源端的,变化越大。
[size=13.63636302947998px]
上图这一切之所以如此,都是因为电磁波虽然是光速,虽然速度很快,但是它毕竟是有限的,在高频率下,很短的尺寸也就表达出来了,但在低频下,需要很长的尺寸才能表达的出来。
[size=13.63636302947998px]
这样我们可以明显的看到,靠近电源端的,电场和磁场都最小,而靠近负载端的,因为导线长度是0.25米,1/4波长,电磁波传递到这儿的实现就需要1/4T,电场和磁场因为受到光速有限决定,信息刚传递过来,所以还是最大。
1 / 2周期
[size=13.63636302947998px]
电压源按300MHz正弦规则从最大值降为反相最大值,也就是1/2周期,传输线长度为0.5米,也就是1/2波长,所对应的传输线电场、磁场波形。
[size=13.63636302947998px]
[size=13.63636302947998px]
注意在传输线中心点位置电压为0V,左边电场向上,右边电场向下。左边导线的电流也跟右边的相反。
3 / 4周期
[size=13.63636302947998px]
电压源按300MHz正弦规再从反相最大值降为0V,也就是3/4周期,传输线长度仍为为0.5米,也就是1/2波长,当负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于左边再传过来一个1/4周期波,右边移出一个1/4周期。
[size=13.63636302947998px]
[size=13.63636302947998px]
一个及多个周期
[size=13.63636302947998px]
电压源按300MHz正弦规则变化完整1个周期,电压从0开始变化,也就是相位从0开始,传输线长度为1米,即1个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了2个方向相反的电流圈。
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
电压源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4个电流圈。
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
电压源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4个电流圈,用圈表示,简化设计。
[size=13.63636302947998px]
波粒二象性
[size=13.63636302947998px] 在msOS群内,当贴出这个图的时候,就有群友认为,这就是波粒二象性啊,当频率越高,圈圈的密度就越大,圈圈内包含的就是能量,电场和磁场的能量。一个个圈圈的从信号源传到负载那儿去。当这个圈圈密度足够高,也就是能量足够强,进入量子尺寸,这个就变成了光子,既是波,又是粒子,一个个的过去,正反两个圈圈就是一个波,当然这个只能意会,不能准确的讲。
[size=13.63636302947998px]
[size=13.63636302947998px] 电磁场的传输很像现在的高速铁路,传输线两根导线,如同铁轨,要均匀对齐,这样适合电场和磁场均匀无变化的向前推进,每节车厢里装两个圈圈,一正一反的,一个波长。这列火车有N节车厢,一直不停的往前开。
[size=13.63636302947998px]
[size=13.63636302947998px]
连载待续,请各位指正。
赞--
拜读了,和我以前理解的不一样,需要慢慢消化一下。
凤舞大神大作,拜读。
不错,充实自己。
不错,很形象,期待后续
通俗易懂,谢谢分享
有些英文版的书讲得挺好的
ELECTROMAGNETICS
EXPLAINED
A HANDBOOK FOR WIRELESS/RF, EMC, AND
HIGH-SPEED ELECTRONICS
Ron Schmitt
可以参考参考会理解更深点
牛人啊,学习中,自己理论知识还是欠缺。
为什么无图片预览?
看起来太累,也许回复了就有图
学习一下,谢谢分享
谢谢分享
回复了有图吗?
回复了有图吗?
RE:【大牛感悟】从电路到电磁场
回复了有图吗?
好好学习,天天向上。
下来看看,很值得看看
无图预览,回复就有图?
[size=13.63636302947998px]前[size=13.63636302947998px] [size=13.63636302947998px]言
[size=13.63636302947998px] 2013年11月在msOS QQ群中即兴讲解了电磁场,之后整理成博客“看得懂的电磁场理论”在相关电子门户网站发表,获得很多网友好评,也有不少网友提出一些质疑,更有一些专门加入msOS群中参与交流讨论。
[size=13.63636302947998px] “看得懂的电磁场理论”还存在一些问题,本人当时也没有理解透彻,尤其是电磁场理论如何解释低频甚至是稳恒直流电路,自己似乎知道,但又讲不清楚,很是苦恼,所以当时是回避了这些问题,长期以来这些苦恼时时让我去思考,可以说从接触电磁场到今天有十多年时间,经常在思考这个东西,想着从一些简单的,显而易见的常识入手感性认知,而不是通过数学去死记,因为数学同样的回避了太多问题,不够形象,也或者说,我们本身对一些基础概念的认知就出错了,被经典电路概念所困住了导致似是而非。
[size=13.63636302947998px] 发表之后到现在快半年了,这半年来经常跟网友沟通讨论,也请教了一些前辈,尤其是当面请教了兰州大学微波、天线专家张金生教授,张教授是老一辈无线电物理专家,长期从事微波、天线研究,张教授亲自看了上篇文章,基本上认同,但也指出了一些缺陷,同时纠正了一个基本概念,而这个概念的纠正直接导致今天的这篇文章出现。
[size=13.63636302947998px] 今天虽然说理解的更多更准确了,但不敢说都理解对了,只能说错误更少了一些,还请大家继续斧正。
直流电
[size=13.63636302947998px] 长期以来,我们了解电路是从回路开始的,以直流稳恒回路为例,电池把化学能转换成电能,电能通过导线传递到负载上,如下图:
[size=13.63636302947998px]
[size=13.63636302947998px] 电池中,化学能把电子从一极移向另一极,缺少电子一极为正极,获得电子一极为负极,两端形成了电势差(Vdc),也就存在了电场,方向从正极指向负极,化学能要驱动电子克服这个电场从正极移动到负极,电池内部的电流移动跟电场方向相反。
[size=13.63636302947998px] 传统对于电子的理解是带负电荷量为e的一个实体,往往指起本身,但是,这个理解是不够准确的,电子除了本身,还应该包括它激发的负电场,电子与电子等作用,根本上是它们各自激发的电场与电场的作用。举个例子一块砖头从天空加速掉下来,是这块砖头激发的引力场与地球的引力场之间的作用导致砖头掉下来的,电子也是这个概念。所以对电子的认知,以前都是基于它的实体认知,现在更多的可以基于它激发的电场来认知,两者是等价的,但基于电场的认知,有助于理解高频、电磁场。
[size=13.63636302947998px] 当用导线连接电池与负载构成一个电路回路,假设为理想导线,内阻为0,则导线跟所连接的正负极等电势,于是在导线之间也形成了电场,负载两端也有这个电势差(Vdc),所以负载内部也有电场。
[size=13.63636302947998px] 很多人可能对于导线之间的电场无法理解,因为以前很少有提到的,所以往往无视,这是重点指出的。我们换一种思维想这个问题,把正负极之间的两根导线看作是一个电容,这个电容两端接在电源上,那么就很好理解了,这个电容被充电了,正负两端就集聚了正负电荷,两极之间就充满了电场,红色矩阵表示正极导线,绿色矩阵表示负极导线,里面的颜色表示内部的电荷分布,要靠近两电极边缘,这样保证导体整个形成等势体,理想导体内部是没有电场的,因为是等势体。
[size=13.63636302947998px]
[size=13.63636302947998px]
就电池单独来讲,刚开始时,电池两端电压为0V,化学能搬移电子从正极到负极,当两极电子集聚或减少的的越来越多的时候,电势差越来越大,以镍氢电池为例,当达到1.2V时,就不再增长,因为这个化学能中Ni转变为Ni离子最大的电动势就是1.2V。所以当电极两端达到1.2V之后,两极电场就阻值了化学能继续反应。
[size=13.63636302947998px]
当电池两端连接了理想导线和负载之后,理想导线要跟两极等电势,所以从电极上获得电荷,跟正极接的导线失去电子获得正电荷,负极接的导线获得电子也就是获得负电荷,这样两导线因为获得不同电荷,之间形成电压差,也就是电池电压,这个电压加在负载R上,对负载R内的自由电子做功,碰撞负载R内的原子发热,类似于电子管里的电子从阴极飞到阳极。之后通过导线回到电池内部,被化学能克服电场重新搬移到正极开始下一轮的循环。
[size=13.63636302947998px]
这儿反复强调,理想导体是等电势,所以内部没有电场。电子在理想导体中移动因为没有受到电场力的作用,所以整体均匀上讲,是匀速运动的,这个电子也可以分布在导体内任何位置移动。
[size=13.63636302947998px]
这里举一个形象的实际例子,吊车把地面的石头举起来,石头克服地球引力(等价于电池),之后平行搬移到另外一个地方(理想导线),放下石头(对负载做功发热),再把它平移回来(理想导线)。直流电模型中,整个回路的电子都可以理解为匀速移动的,两根导线中因为不受力,所以匀速,电池中,化学能抵消电场力,所以匀速,负载中,电子与原子的碰撞发热与电场力抵消,所以匀速。
[size=13.63636302947998px]
理想导体,关键在于“导”字,“导”就是通的意思。通的,就是没有电压差,也就是没有电场,所以不存在加速过程,只是匀速平移。很多人认为,导体中有电流移动,所以就有电压,其实,均匀的电流移动,是可以不需要电压的,这个跟物理中的物体做匀速运动,不需要外力是一个道理。
[size=13.63636302947998px]
理想导体因为是完全导通没有电压差的,理论上讲是可以通任意电流大小电流的。最终在导体中的电流大小,取决于负载上流过的电流大小。
[size=13.63636302947998px]
实际中的导体都不是理想导体,都是有内阻的,所以会有一定的沿着导线方向的电压差,所以会发热,但理想导体或者超导体是绝对没有沿着导体方向的电压差的。
[size=13.63636302947998px]
对于一个闭环的超导体回路来说,因为内阻为零,有一定长度,可以完全理解为一个纯电感,当变化的磁场通过超导体回路会产生涡电场,也就是有一个电动势加在闭环超导体中,这个时候,因为理想导体内部不能有电场,所以这个电场由纯电感感应的逆电动势抵消来保持理想导体内部无电场,这等效于给这个纯电感充电,准确的讲是充磁(感谢网友“大宝小莉啊”纠正),电流按照电感公式U = L* I / T变化。
[size=13.63636302947998px]
我们可以来一个总结:
[size=13.63636302947998px]
1、 理想导体,因为是等电势,所以内部是没有电场的。
[size=13.63636302947998px]
2、 有电压差,就能产生电场:E = U / D,E为电场强度,U为电压差,D为距离。
[size=13.63636302947998px]
3、 电流,其实就是磁场的另外一种表现形式,电流与磁场如同电子如电场的关系。
[size=13.63636302947998px]
我们很多自小就接触电子,因为那个时候接受事物的能力有限,所以接触的一些概念,往往是比较形象的,比如把电路理解为一个回路,电流在这个回路里流,大家很容易想象着,电场方向也是跟电流方向一致的。其实,在导体里,电场方向是否跟电流一致,书本上其实是回避了的,但这个是我们自己的潜意识形成的,而这一点却严重的制约了后来对电磁场的理解。
[size=13.63636302947998px]
接下来分析一下常规导线里面的电场与外部电场的关系,看看是否是我们原先所认知的那样。我们以家庭常用的220VAC交流电源线为例,红黑双根分别为火线和地线,铜线截面积为0.5平方毫米,线中心与线中心之间间距4mm,单根导线每米电阻为0.1欧姆,我们做一些初略的计算分析线内外的电场情况,设电压为220V。
[size=13.63636302947998px]
线外电场:E = 220伏 / 0.04米 = 5500伏/米。这个是平板电容的计算方式,导线与导线之间的电场,要略低于这个值,估算降低一个数量级为550伏/米。(感谢网友“haulegend”纠正)
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
线内电场:E = 0.1欧姆 * N安培 / 1米 = 0.1N伏/米
[size=13.63636302947998px]
这个N根据实际电流大小决定,若为1安培,则导线内的电场只有0.1伏/米,远远小于线外的电场强度550伏/米,可以忽略不计。
[size=13.63636302947998px]
[size=13.63636302947998px]
三条常识
[size=13.63636302947998px]1、 我们知道,物质、能量的传递都不可以瞬间进行的,而已知的最高速度,就是光速,光也是电磁波,也就是说,电磁波的速度是最高的,那就是C = 300 000 000米/秒。
[size=13.63636302947998px]2、 电路、电磁场是可以统一的,电路是电磁场理论在低频小回路中的一个近似。这个前人已经证明,我们把结论直接拿来用。
[size=13.63636302947998px]3、 电路回路深入人心,回路概念不能随便丢弃。
交流信号
[size=13.63636302947998px] 日常交流电是50Hz,虽然只有50Hz,但也是基于电磁场理论的,我们先推算一下它的波长。
[size=13.63636302947998px] 波长 = 300 000 000 / 50 = 6 000 000米 = 6000千米。
[size=13.63636302947998px]这也就是说,我们先承认50Hz的交流电是电磁波的话,那么它的波长是6000km,因为这个尺度太大了,远远超出了我们实际常用的尺寸,所以哪怕是电磁场,我们也感觉不到。这如同人相对于地球非常渺小,视野非常有限,发现不了地球到底是圆的,还是平的,一个道理。
[size=13.63636302947998px] 假如这个频率提高到300MHz,也就是一秒钟变化300百万次。
[size=13.63636302947998px] 波长 = 300 000 000 / 300 000 000 = 1米。
[size=13.63636302947998px] 而今天,我们的射频,比如手机频率都在900MHz或者1800MHz,WIFI等都工作在2400MHz上,所以产生的波长,跟我们的实际器件、回路尺寸都很接近,我们不得不考虑电磁场理论对我们的影响了。
[size=13.63636302947998px] 一个波长范围内,表征了一个完整的信号变化,理想情况下电压、电流按正弦波规律变化,对应的电场和磁场也是按这个变化。以300MHz信号为例,波长是1米,在一个长回路中,每隔1米位置信号电压是完全相同的,每隔0.5米位置信号电压是完全相反的。当前高速PCB布板,比如DDR2内存就工作在这个200~300MHz频率附近(数字信号可以分解为各个正弦波的叠加,这个例子对正弦波和方波都试用,信号不考虑反射条件下),考虑到PCB板介电常数是3.9~4.2,取整数为4,那么波长缩短为4倍,只有1 / 4 = 0.25米,也就是波长只有25厘米。DDR2地址、数据线有很多根,假如因为布线条件决定引起各根地址或者数据线之间长短不一,比如差12.5cm,数据就完全相反了,0变成了1,1变成了0。哪怕差1cm,也引起了1 / 25 * 360 = 14.4度的相位差。这也严重的影响了时钟信号的采样判断点。所以在DDR2等多地址、数据线的条件下,无法忽视因为信号电磁场传播延时引起的数据相位差问题了。
[size=13.63636302947998px]
[size=13.63636302947998px]
1 / 4周期
[size=13.63636302947998px] 我们还是回到开头的直流电模型中,设导线单根长度0.25米,电压为Vdc,突然,我们把电压从Vdc降为0V,这个变化规则是按正弦波规则从最大值Vdc降为0,为了简化模型,设这个正弦波的频率为300MHz,等价于初始相位为90度,也就是最大值,之后按300MHz频率的变化速度变化到180度的过程。这就是1/4周期,简写为(1/4T),这样导线长度就等价于1/4波长了,如下图:
[size=13.63636302947998px]
[size=13.63636302947998px]
因为电源突然电压按300Mhz正弦波规则下降为0V,靠近电源的地方被牵引,电压降低,对应的电场就变小,越靠近的越小。相应的,因为左边电源电压降低,对左边的导线产生影响,也就是有一个负电压,但是导线内部是不允许有电压的,这个时候,必须要降低左边的电流,也就是改变左边导线磁场产生一个反向电动势来抵消这个电压差,越靠近左边电源端的,变化越大。
[size=13.63636302947998px]
上图这一切之所以如此,都是因为电磁波虽然是光速,虽然速度很快,但是它毕竟是有限的,在高频率下,很短的尺寸也就表达出来了,但在低频下,需要很长的尺寸才能表达的出来。
[size=13.63636302947998px]
这样我们可以明显的看到,靠近电源端的,电场和磁场都最小,而靠近负载端的,因为导线长度是0.25米,1/4波长,电磁波传递到这儿的实现就需要1/4T,电场和磁场因为受到光速有限决定,信息刚传递过来,所以还是最大。
1 / 2周期
[size=13.63636302947998px]
电压源按300MHz正弦规则从最大值降为反相最大值,也就是1/2周期,传输线长度为0.5米,也就是1/2波长,所对应的传输线电场、磁场波形。
[size=13.63636302947998px]
[size=13.63636302947998px]
注意在传输线中心点位置电压为0V,左边电场向上,右边电场向下。左边导线的电流也跟右边的相反。
3 / 4周期
[size=13.63636302947998px]
电压源按300MHz正弦规再从反相最大值降为0V,也就是3/4周期,传输线长度仍为为0.5米,也就是1/2波长,当负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于左边再传过来一个1/4周期波,右边移出一个1/4周期。
[size=13.63636302947998px]
[size=13.63636302947998px]
一个及多个周期
[size=13.63636302947998px]
电压源按300MHz正弦规则变化完整1个周期,电压从0开始变化,也就是相位从0开始,传输线长度为1米,即1个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了2个方向相反的电流圈。
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
电压源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4个电流圈。
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
[size=13.63636302947998px]
电压源按300MHz正弦规则变化完整2个周期,电压从0开始变化,也就是相位从0开始,传输线长度为2米,即2个波长,负载R完全吸收传过来的信号没有反射的情况下,所对应的传输线电场、磁场波形。这个相当于在一个周期内形成了4个电流圈,用圈表示,简化设计。
[size=13.63636302947998px]
波粒二象性
[size=13.63636302947998px] 在msOS群内,当贴出这个图的时候,就有群友认为,这就是波粒二象性啊,当频率越高,圈圈的密度就越大,圈圈内包含的就是能量,电场和磁场的能量。一个个圈圈的从信号源传到负载那儿去。当这个圈圈密度足够高,也就是能量足够强,进入量子尺寸,这个就变成了光子,既是波,又是粒子,一个个的过去,正反两个圈圈就是一个波,当然这个只能意会,不能准确的讲。
[size=13.63636302947998px]
[size=13.63636302947998px] 电磁场的传输很像现在的高速铁路,传输线两根导线,如同铁轨,要均匀对齐,这样适合电场和磁场均匀无变化的向前推进,每节车厢里装两个圈圈,一正一反的,一个波长。这列火车有N节车厢,一直不停的往前开。
[size=13.63636302947998px]
[size=13.63636302947998px]
连载待续,请各位指正。
赞--
拜读了,和我以前理解的不一样,需要慢慢消化一下。
凤舞大神大作,拜读。
不错,充实自己。
不错,很形象,期待后续
通俗易懂,谢谢分享
有些英文版的书讲得挺好的
ELECTROMAGNETICS
EXPLAINED
A HANDBOOK FOR WIRELESS/RF, EMC, AND
HIGH-SPEED ELECTRONICS
Ron Schmitt
可以参考参考会理解更深点
牛人啊,学习中,自己理论知识还是欠缺。