微波EDA网,见证研发工程师的成长!
首页 > 研发问答 > 硬件电路设计 > 电子工程师杂谈 > 全球首颗非冯诺伊曼架构处理器即将面世,到底哪种工作模式更有优势?

全球首颗非冯诺伊曼架构处理器即将面世,到底哪种工作模式更有优势?

时间:10-02 整理:3721RD 点击:

美国国防部先进计划署(DARPA)目前正资助开发一种全新的非冯-诺伊曼(non-von-Neumann)架构处理器——称为“分层辨识验证利用”(Hierarchical Identify Verify Exploit;HIVE)。DARPA计划在4年内半内投入8,000万美元,打造这款HIVE处理器。包括英特尔(Intel)与高通(Qualcomm)等芯片商以及国家实验室、大学与国防部承包商North Grumman都加入了这项计划。


美国太平洋西北国家实验室(Pacific Northwest National Laboratory;PNNL)和乔治亚理工学院(Georgia Tech)负责为该处理器打造软件工具,而Northrup Grumman则将建立一座巴尔的摩中心,利用这款号称全世界首款图形分析处理器(GAP)执行国防部(DoD)的图表分析任务。




HIVE使用以数据的多层图形显示作为开始的序列(如图),开启了图解分析处理的方式,在各层之间辨识资料之间的关系。(数据源:DARPA)


DARPA微系统技术办公室(MTO)计划经理Trung Tran表示:“今日的计算机架构同样采用1940年代发明的[John] von Neumann架构。CPU与GPU均采取平行运算,但它的每个核心仍然是von Neumann处理器。”


Tran说:“HIVE并不是冯诺依曼架构,因为它的数据稀疏,而且能同时在不同的记忆领域同时执行不同的过程。这种非冯-诺依曼途径可让许多处理器同时存取,各自采用其本地暂存内存,在全局内存上同时执行分散和汇集作业。”




“芯片拼贴图”象征DARPA资助开发的新型处理器计划——“超越微缩:电子复兴计划”(Beyond Scaling: An Electronics Resurgence Initiative)正推动微系统结构和性能的新纪元。(来源:DARPA)

图形分析处理器目前并不存在,但在理论上与CPU和GPU有着显著的不同。首先,它们经优化用于处理稀疏图形元素。由于所处理的项目稀疏地位于全局内存,因而也涉及一种新的内存架构——能以每秒高达TB容量的超高速度随机存取记忆位置。


当今的内存芯片经过优化,能以最高速度存取长序列位置(以填补其快取),这些速度大约落在每秒GB的范围。另一方面,HIVE将以最高速度从全局内存随机存取8位数据点,然后再以专用的暂存内存分别处理。该架构据称也具有可扩展能力,但需要许多HIVE处理器执行特定的图形算法。

Tran说:“当今所收集的所有数据中,只有大约20%是有用的——这就是为什么稀疏——让我们的8字节粒度对于巨量数据(Big Data)的问题效率更高。”



实时绘图分析需要高达Giga TEPS的处理速度(绿色),才能辨识现场呈现的关系,这较目前速度最快的GPU (蓝色)或CPU (红色)速度更快1,000倍。(来源:DARPA)


这种图形分析处理器采用优化的新式算法处理单元(APU),加上DARPA提供的新内存架构芯片,据称其功耗较今日的超级计算机功耗更低1,000倍。参与这项计划的组织,特别是英特尔与高通,也将有权商用化这款处理器与记忆架构。


根据DARPA,图形分析处理器可用于解决Big Data的问题,因为这方面的问题通常是多对多的关系,而非为目前的处理器优化的多对一或一对一的关系。


Tran说:“从我的立场来看,下一个需要解决的大问题就是Big Data,目前采用的方法是回归分析,但对于非常稀疏的数据点之间的关系来说,这种方法是无效的。我们发现,CPU与GPU在处理问题的大小与结果的丰富性之间留下了很大的差距,而图形理论则完美契合目前所看到的这一新兴市场。”


除了HIVE芯片,DARPA也呼吁共同开发软件工具,并藉由同步并行存取随机内存位置,协助编程这种超越今日平行处理典范的新架构。如果成功了,DARPA宣称这种图形分析处理器将有能力辨识传统CPU与GPU难以处理的许多情况类型。



英特尔CPU、Nvidia GPU、Google TPU和DARPA提出的HIVE处理器之间的应用(上)和性能(下)比较。(来源:DARPA)


DARPA认为,Big Data为图形节点提供了传感器馈送、经济指标、科学和环境测量,而图形的边缘则是不同节点之间的关系,例如亚马逊(Amazon)案例中的“购买”行为。


图形理论分析的基础可以追溯到著名的哲学家Gottfried Wilhelm Leibniz,以及Leonhard Euler在1736年出版的首篇相关论文:“柯尼斯堡七桥问题”(Seven Bridges of K?nigsberg)。从那时起,图形理论已经发展成为建模随机数据点之间关系的一系列算法和数学结构。HIVE架构的设计就在于使用这些图形分析来辨识威胁、追踪疾病爆发,以及解答Big Data的问题,因为这些问题寺于目前的传统CPU和GPU来说相当棘手。


为期四年半的DARPA计划在第一年将与英特尔和高通共同设计芯片架构,而Georgia Tech和PNNL则负责开发软件工具。在第一年之后,将会选出一款硬件设计和一款软件工具。DARPA将为赢得硬件设计的公司提供5,000万美元的赞助,但该公司也将自行提供5,000万美元。此外,DARPA还将为赢得软件设计的组织提供700万美元的赞助。


同时,Northrup将获得1,100万美元的资金,用于打造巴尔的摩中心,调查国防部对于图形分析的所有需求,并确保硬件和软件制造商满足这些需求。


英特尔数据中心副总裁Dhiraj Mallick表示:“HIVE计划目的在于针对数据处理,利用图形分析处理器发挥机器学习以及其他人工智能(AI)的影响力。”


Mallick有信心英特尔的芯片设计将会赢过高通,他说:“英特尔已被要求在这项计划结束时提供16节点的平台,在一块电路板上使用16个HIVE处理器,英特尔也将拥有为全球市场提供产品的权利。”


随着这项计划进展,这款HIVE处理器将可实现实时辨识与感知策略资产。相形之下,Mallick说,至今我们还得依靠“失马锁厩,为时已晚”的事后分析…


冯诺依曼式计算机本质上是采用串行顺序处理的工作模式,非冯诺依曼式计算机的研究方向是采用并行处理的工作模式,这里两种工作模式到底谁更有优势呢?有懂的发烧友来讲讲吗?



有创新总是会有发展的,就算比较曲折也好。

见识了!

用市场来检验吧

这还是要看市场结果吧

不明觉厉,还要听大牛们娓娓道来。

太牛了,人家的脑子怎么长的

人家脑洞大大的,超越常人之思维

没有见识过,了解一下

不错!我就想自己电脑用这种CPU

生物逻辑处理器。

实际运用来检验谁更具有潜力。

长见识了。

一切以解决实际问题为前提!

市场才是老大吧,注意一个词:美国国防部......

可以                                                               

我个人觉得还是并行处理更快一些

                流水线结构

有创新总是会有发展的

                   ASIC、RISC

我路过来热闹      

太牛了,人家的脑子怎么长的

很是期待啊,传统即将被打破

科技改变世界,终于打破冯诺依曼构架了

路过路过路过路过路过路过路过

实践检验吧!

全球首颗非冯诺伊曼架构处理器即将面世,到底哪种工作模式更有优势?

另一个是哈佛架构吧

冯结构的缺陷还是很明显的         

市场检验                     

感觉牛人好多啊

人家脑洞大大的,超越常人之思维

太牛了,人家的脑子怎么长的

太牛了,太牛了,太牛了,太牛了,

冯-诺伊曼还是在平台层的

Copyright © 2017-2020 微波EDA网 版权所有

网站地图

Top